Improved Convective Heat Transfer Correlations for Two-Phase Two-Component Pipe Flow

Dongwoo Kim*

School of Mechanical and Aerospace Engineering, Oklahoma State University Stillwater, Oklahoma 74078, U.S.A.

In this study, six two-phase nonboiling heat transfer correlations obtained from the recommendations of our previous work were assessed. These correlations were modified using seven extensive sets of two-phase flow experimental data available from the literature, for vertical and horizontal tubes and different flow patterns and fluids. A total of 524 data points from five available experimental studies (which included the seven sets of data) were used for improvement of the six identified correlations. Based on the tabulated and graphical results of the comparisons between the predictions of the modified heat transfer correlations and the available experimental data, appropriate improved correlations for different flow patterns, tube orientations, and liquid-gas combinations were recommended.

Key Words : Heat Transfer Correlation, Convective Heat Transfer, Two-Phase (Two-Component) Flow, Flow Pattern

Nomenclature -

- A : Cross sectional area, ft^2 or m^2
- c : Specific heat at constant pressure, Btu/ (lbm-°F) or J/(kg-K)
- D : Inside diameter of the tube, ft or m
- G_t : Mass velocity of total flow $(=\rho V)$, lbm/(hr-ft²) or kg/(s-m²)
- *h* : Heat transfer coefficient, $Btu/(hr-ft^2-°F)$ or $W/(m^2-K)$
- k : Thermal conductivity, Btu/(hr-ft-°F) or W/(m-K)
- L : Length of the heated test section, ft or m

```
m : Mass flow rate, lbm/hr or kg/s
Nu : Nusselt number (=hD/k),
```

dimensionless

- P : Mean system pressure, psi or Pa
- Pa : Atmospheric pressure, psi or Pa
- $\Delta P_{\rm M}/\Delta L$: Momentum pressure drop per unit length, lbf/ft³ or Pa/m

* Corresponding Author,

E-mail: kimdwl@samsung.co.kr

TEL: +82-31-200-4028; FAX: +82-31-200-4648 Samsung Electronics, Co. Ltd., 416 Maetan-3dong, Paldal-gu, Suwon, Kyunggi 442-742, Korea (Manuscript Received September 22, 2001; Revised December 16, 2001)

- $\Delta P/\Delta L$: Total pressure drop per unit length, lbf/ ft³ or Pa/m
- Pr ; Prandtl number $(=c\mu/k)$, dimensionless
- Q : Volumetric flow rate, ft³/min or m³/s
- q'': Heat flux per unit area, Btu/(hr-ft²) or W/m²
- Re : Reynolds number $(=\rho VD/\mu)$, dimensionless
- $\begin{aligned} Re_{\mathcal{M}} &: \text{Mixture Reynolds number } (=\rho_L U_{\mathcal{M}}^* D / \\ \mu_L & \text{in (Ueda and Hanaoka(1967)),} \\ \text{dimensionless, where } U_{\mathcal{M}}^* = V_L + 1.2 \\ & (Re_S)^{-0.25} \quad V_S \quad -12 \quad Fr_{ED} \quad V_{ED} + 16 \\ & (Fr_S)^{1.25} V_S, \quad Re_S = \rho_L V_S D (1 \sqrt{\alpha}) / \mu_L, \\ & V_{ED} = V_{SL} + V_{SG}, \quad Fr_{ED} = \alpha D (1 \sqrt{\alpha} / V_{ED}^2, \quad Fr_S = D (1 \sqrt{\alpha} / V_S^2, \quad V_L = V_{SL} / (1 \alpha), \quad V_G = V_{SG} / \alpha, \quad V_S = \text{slip velocity} = V_G \\ & V_L \end{aligned}$

Re_{TP}: Two-phase flow Reynolds number, dimensionless,

> = $Re_{SL}/(1-\alpha)$ in Chu and Jones (1980) = G_FD/μ_F where G_F =mass flow rate of froth and $\mu_F = (\mu_W + \mu_A)/2$ in Dusseau (1968) = $Re_{SL} + Re_{SG}$ in Elamvaluthi and Srimivas (1984) and Groothuis and

Hendal(1959) : Liquid volume fraction $(=1-\alpha)$, R_L dimensionless : Temperature, °F or °C \mathcal{T} V : Average velocity in the test section, ft/s or m/s : Flow quality $(=\dot{m}_G/\dot{m}_{TP})$, x dimensionless : Martinelli parameter $\left[=\left(\frac{1-x}{x}\right)^{0.9}\right]$ X_{TT} $\left(\frac{\rho_{G}}{\rho_{L}}\right)^{0.5} \left(\frac{\mu_{L}}{\mu_{C}}\right)^{0.1}$], dimensionless : Void fraction $[=A_G/(A_G+A_L)],$ α dimensionless : Dynamic viscosity, lbm/(hr-ft) or Pa-s μ ϕ_{s}, ϕ_{1} : Lockhart-Martinelli (1949) two-phase gas and liquid multipliers, dimensionless : Density, lbm/ft³ or kg/m³ ρ Subscripts Α : Air В : Bulk CAL : Calculated EXP : Experimental G : Gas L : Liquid MIX : Gas-liquid mixture TP : Two-phase TPF : Two-phase frictional SG : Superficial gas SL: Superficial liquid W : Wall Abbreviations Α : Air or annular flow В : Bubbly flow B-S : Bubbly-slug transitional flow (other combinations with dashes are also

transitional flows) C : Churn flow

- F : Froth flow
- F12 : Freon 12
- G : Glycerin
- H : Helium or horizontal
- M : Mist flow
- S : Slug flow or silicone
- V : Vertical
- W : Water

1. Introduction

In many industrial applications, such as, the flow of natural gas and oil in flow lines and wellbores, the knowledge of nonboiling twophase, two-component (liquid and permanent gas) heat transfer is required. When a gas-liquid mixture flows in a pipe, a variety of flow patterns may occur, depending primarily on flow rates, the physical properties of the fluids, and the pipe inclination angle. The main flow patterns that generally exist in vertical upward flow of gas and liquid in tubes can be classified as bubbly, slug, froth, annular, and churn flows. The main flow patterns that might exist in two-phase gas-liquid flow in horizontal tubes can be classified as bubbly, stratified, slug, and annular flows. The variety of flow patterns reflects the different ways that the gas and liquid phases are distributed in a pipe. This causes the heat transfer mechanism to be different in the different flow patterns.

Numerous heat transfer correlations and experimental data for forced convective heat transfer during gas-liquid two-phase flow in vertical and horizontal pipes have been published over the past 40 years. These correlations for the two-phase flow convective heat transfer were developed based on limited experimental data and are only applicable to certain flow patterns. Kim et al. (1999) identified 38 two-phase flow heat transfer correlations. These correlations were compared against a large set of two-phase flow heat transfer experimental data, for vertical and horizontal tubes and different flow patterns and fluids. Table 1 shows twenty of the 38 heat transfer correlations that were identified and tested by Kim et al. (1999). The rest of the twophase flow heat transfer correlations were not tested since the required information for the correlations was not available through the available experimental studies. The limitations of the twenty correlations presented in Table 1 as proposed by the original authors are tabulated in Table 2. While most of the identified heat transfer correlations were derived empirically based on a small set of experimental data, some of the heat

404

Source	Heat Transfer Correlations	Source	Heat Transfer Correlations
Aggour (1978)	$\begin{split} h_{TP} / h_{L} &= (1 - \alpha)^{-1/3} & Laminar (L) \\ Nu_{L} &= 1.615 \left(Re_{SL} Pr_{L} D / L \right)^{1/3} (\mu_{B} / \mu_{W})^{0.14} & (L) \\ h_{TP} / h_{L} &= (1 - \alpha)^{-0.83} & Turbulent (T) \\ Nu_{L} &= 0.0155 Re_{SL}^{0.83} Pr_{L}^{0.5} (\mu_{B} / \mu_{W})^{0.33} & (T) \end{split}$	Knott et al. (1959)	$\frac{h_{TP}}{h_L} = \left(1 + \frac{V_{SG}}{V_{SL}}\right)^{1/3}$ where h _L is from Sieder & Tate (1936)
Chu & Jones (1980)	Nu _{TP} = 0.43 (Re _{TP}) ^{0.55} (Pr _L) ^{1/3} $\left(\frac{\mu_B}{\mu_W}\right)^{0.14} \left(\frac{Pa}{P}\right)^{0.17}$	Kudirka et al. (1965)	$Nu_{TP} = 125 \left(\frac{V_{SG}}{V_{SL}}\right)^{1/8} \left(\frac{\mu_G}{\mu_L}\right)^{0.6} (Re_{SL})^{1/4} (Pr_L)^{1/3} \left(\frac{\mu_B}{\mu_W}\right)^{0.14}$
Davis & David (1964)	Nu _{TP} = 0.060 $\left(\frac{\rho_L}{\rho_G}\right)^{0.28} \left(\frac{DG_I x}{\mu_L}\right)^{0.87} Pr_L^{0.4}$	Martin & Sims (1971)	$\frac{h_{TP}}{h_L} = 1 + 0.64 \sqrt{\frac{V_{SG}}{V_{SL}}}$ where h _L is from Sieder & Tate (1936)
Dorres- teijn (1970)	$h_{TP} / h_{L} = (1 - \alpha)^{-1/3} $ (L) $h_{TP} / h_{L} = (1 - \alpha)^{-0.8} $ (T) $Nu_{L} = 0.0123 \operatorname{Re}_{SL}^{0.9} \operatorname{Pr}_{L}^{0.33} (\mu_{B} / \mu_{W})^{0.14}$	Oliver & Wright (1964)	$Nu_{TP} = Nu_{L} \left(\frac{1.2}{R_{L}^{0.36}} - \frac{0.2}{R_{L}} \right)$ $Nu_{L} = 1.615 \left[\frac{(Q_{G} + Q_{L})\rho D}{A\mu} Pr_{L} D / L \right]^{1/3} (\mu_{B} / \mu_{W})^{0.14}$
Dusseau (1968)	$Nu_{TP} = 0.029 (Re_{TP})^{0.87} (Pr_L)^{0.4}$	Ravipudi & God- bold (1978)	$Nu_{TP} = 0.56 \left(\frac{V_{SG}}{V_{SL}}\right)^{0.3} \left(\frac{\mu_G}{\mu_L}\right)^{0.2} (Re_{SL})^{0.6} (Pr_L)^{1/3} \left(\frac{\mu_B}{\mu_W}\right)^{0.14}$
Elamvalu -thi & Srinivas (1984)	$Nu_{TP} = 0.5 \left(\frac{\mu_{G}}{\mu_{L}}\right)^{1/4} (Re_{TP})^{0.7} (Pr_{L})^{1/3} \left(\frac{\mu_{B}}{\mu_{W}}\right)^{0.14}$	Rezka- llah & Sims (1987)	$h_{TP} / h_L = (1-\alpha)^{-0.9}$ where h_L is from Sieder & Tate (1936)]
Groo- thuis & Hendal (1959)	$Nu_{TP} = 0.029 (Re_{TP})^{0.37} (Pr_L)^{1/3} (\mu_B / \mu_W)^{0.14}$ (for water-air) $Nu_{TP} = 2.6 (Re_{TP})^{0.39} (Pr_L)^{1/3} (\mu_B / \mu_W)^{0.14}$ (for (gas-oil)-air)	Serizawa et al. (1975)	$\frac{h_{TP}}{h_L} = 1 + 462X_{TT}^{-1.27}$ where h _L is from Sieder & Tate (1936)
Hugh- mark (1965)	$Nu_{TP} = 1.75 (R_L)^{-1/2} \left(\frac{\dot{m}_L c_L}{R_L k_L L}\right)^{1/3} \left(\frac{\mu_B}{\mu_W}\right)^{0.14}$	Shah (1981)	$\frac{h_{TP}}{h_L} = \left(1 + \frac{V_{SG}}{V_{SL}}\right)^{1/4}$ $Nu_L = 1.86 \left(Re_{SL} Pr_L D / L\right)^{1/3} (\mu_B / \mu_W)^{0.14} \qquad (L)$ $Nu_L = 0.023 Re_{SL}^{0.8} Pr_L^{0.4} (\mu_B / \mu_W)^{0.14} \qquad (T)$
Khoze et al. (1976)	$Nu_{TP} = 0.26 Re_{SG}^{0.2} Re_{SL}^{0.55} Pr_{L}^{0.4}$	Ueda & Hanaoka (1967)	Nu _{TP} = 0.075(Re _M) ^{0.6} $\frac{Pr_L}{1+0.035(Pr_L-1)}$
King (1952)	$\frac{h_{TP}}{h_L} = \frac{R_L^{-0.52}}{1 + 0.025 Re_{SG}^{0.5}} \left[\left(\frac{\Delta P}{\Delta L} \right)_{TP} / \left(\frac{\Delta P}{\Delta L} \right)_L \right]^{0.32}$ Nu _L = 0.023 Re _{SL} ^{0.8} Pr _L ^{0.4}	Vijay et al. (1982)	$\begin{split} h_{TP} / h_{L} &= (\Delta P_{TPF} / \Delta P_{L})^{0.451} \\ Nu_{L} &= 1.615 \left(Re_{SL} Pr_{L} D / L \right)^{1/3} (\mu_{B} / \mu_{W})^{0.14} (L) \\ Nu_{L} &= 0.0155 Re_{SL}^{0.83} Pr_{L}^{0.5} (\mu_{B} / \mu_{W})^{0.33} (T) \end{split}$
Neter	and Design from the original approximatel de	Sieder & Tate (1936)	$Nu_{L} = 1.86 (Re_{SL} Pr_{L} D / L)^{1/3} (\mu_{B} / \mu_{W})^{0.14} $ (L) $Nu_{L} = 0.027 Re_{SL}^{0.8} Pr_{L}^{0.33} (\mu_{B} / \mu_{W})^{0.14} $ (T)

Table 1 Heat transfer correlations chosen for this study

Note: α and R_L are taken from the original experimental data for this study. Re_{SL} < 2000 implies laminar flow, otherwise turbulent; and for Shah (1981), replace 2000 by 170. With regard to the eqs. given for Shah (1981) above, the laminar two-phase correlation was used along with the appropriate single phase correlation, since Shah (1981) recommended a graphical turbulent two-phase correlation.

Source	Fluids	L/D	Orient.	mi _G /mi _L	V _{SG} /V _{SL}	Resg	Re _{SL}	PrL	Flow Pattern(s)
Aggour (1978)	A-W, Helium-	52.1	V	7.5x10 ⁻⁵ -	0.02-470	13.95-		5.78-	B. S. A. B-S.
	W, Freon12-W			5.72x10 ⁻²		2.95x10⁵		7.04	B-F, S-A, A-M
Chu & Jones	W-A	34	V		0.12-	540-	16000-	· · · · · · ·	B, S, F-A
(1980)					4.64	2700	112000		
Davis & David	Gas-Liquid		H & V						A, M-A
(1964)									
Dorresteijn	A-Oil	16	V		0.004-		300-66000		B, S, A
(1970)					4500				
Dusseau (1968)	A-W	67	V	45-350		0-	1.4x10 ⁴ -		F
Element of C				<u></u>		4.29x10*	4.9x10*		
Similar (1084)	A-W A Classic	80	v		0.3-2.5		300-14300		B, S
Groothuia P	A-Glycenn	142	V	244.077	0.0-4.0		- 5000		
Hendal (1959)	Gae Oil A	14.5	v	244-9//	1-200		>5000		
Hughmark	Gas-Liquid		<u> </u>	209-313	0.0-00		1400-3300		
(1965)	Cas-Liquid		п						2
Khoze et al.	A-W A-Poly	60.				4000-	3 5-210	41.00	A
(1976)	methylsiloxane.	80	•			37000	5.5-210	4.1-50	A ·
	A-Diphenyl					57000			
	oxide								
King (1952)	A-W	252	Н		0.327-	1570-	22500-		
					7.648	8.28x10 ⁴	11.9x10 ⁴		-
Knott et al.	Petroleum oil-	119	v	1.57x10 ⁻³ -	0.1-4	6.7-162	126-3920		В
(1959)	Nitrogen gas			1.19					
Kudirka et al.	A-W,	17.6	V	1.92x10 ⁻⁴ -	0.16-75		5.5x10*-	140@	B, S, F
(1965)	A-Ethylene			0.1427			49.5x10 ⁴	37.8°C	
	glycol			0-0.11	0.25-67		380-1700		
Martin & Sims	A-W	17	Н						B, S, A
(19/1)	A 0607 CI 1							·····	·
Wright (1064)	A-85% GIYCOL		н				500-1800		S
Winght (1904)	A-1.5% SCIVIC,								
Ravinudi &	A W		V		1.00	2562	9554 90626	·	
Godbold (1978)	A-Toluene		v		1-90	82532	8334-89020		F
	A-Benzene.					02332			
	A-Methanol								
Rezkallah &	A, W, Oil, etc.;	52.1	v		0.01-		1.8-1.3x10°	4.2-	B. S. C. A. F.
Sims (1987)	13 Liquid-Gas				7030			7000	B-S. B-F. S-C.
	combinations								S-A, C-A, F-A
Serizawa et al.	A-W	35	V.						В
(1975)	·								
Shah (1981)	A, W, Oil,		H & V		0.004-		7-170		B, S, F, F-A, M
	Nitrogen,				4500				
	Giycoi, etc.; 10								
Llada &	A Liquid	67	V	0.4-10-4	4.60			4.1(0	
Hanaoka (1967)	M-Liquia	0/	۷	9.4X10 -	4-30			4-160	3, A
Vijav et al	A-W	52.1	v	0.033	0.005		1.8-130000	5.5	DCEAM
(1982)	A-Glycerin.		•		7670		1.0-1.00000	7000	$\mathbf{D}, \mathbf{J}, \mathbf{F}, \mathbf{A}, \mathbf{W}$
· · · · · · · · · · · · · · · · · · ·	Helium-W.							1000	A-M
	Freon12-W								

 Table 2
 Author-specified limitations of the heat transfer correlations used in this study (See Nomenclature for Abbreviations)

transfer correlations were based on either the liquid acceleration model concept, the pressure drop model concept, the separated flow model concept, or the dimensional analysis concept. The

two-phase heat transfer correlations developed based on these different concepts may be divided into three main groups. A brief description of each group is as follows.

2. Explicit Void Fraction Parameter in Two-Phase Flow Heat Transfer Correlations

This type of correlation uses the liquid acceleration model concept. This approach is based on the assumptions that the introduction of the gas phase into the two-phase heated test section acts only to accelerate the liquid phase, and that the heat is transferred and carried away mainly by the liquid phase. Thus, the two-phase heat transfer mechanism could be considered as heat transfer to a single-phase liquid flow, with the liquid flowing with the actual mean (not the superficial) velocity in the heated test section. Therefore, the void fraction parameter explicitly appears in the two-phase heat transfer correlation. However, researchers used different single-phase heat transfer correlations in their two-phase heat transfer coefficient correlations which has resulted in slightly different non-dimensional parameters and exponent values. Also, some researchers assumed that the two-phase heat transfer mechanism was directly related to the instantaneous amount of the ratio of liquid and gas. Thus, they used void fraction (α) or liquid volume fraction (R_L) as a parameter in the twophase heat transfer correlations. Aggour (1978), Dorresteijn (1970), Hughmark (1965), and Rezkallah & Sims (1987) used this method of approach.

3. Two-Phase Heat Transfer Correlations from Dimensional Analysis / Separated Flow Model Concepts

In this case, the single-phase heat transfer correlation developed by Sieder and Tate (1936) was employed and modified for the two-phase heat transfer data, since several researchers assumed that the two-phase flow heat transfer mechanisms are quite similar to those of singlephase flow. During the procedures of modifying the single-phase heat transfer correlation to a twophase heat transfer correlation, additional parameters were introduced using dimensional analysis or separated flow model concepts. From the dimensional analysis considerations, the dimensionless parameters (ρ_L/ρ_G) , (μ_G/μ_L) , and (V_{sc}/V_{sL}) were introduced in the correlations of Davis and David (1964), Kudirka et al. (1965), and Ravipudi and Godbold (1978). Also, several researchers considered that the increase in the value of two-phase heat transfer coefficient was attributed to the increase of the effective mixture velocity, and the effective mixture velocity was defined as the sum of the single-phase liquid and gas velocities. They introduced Re_{TP} or $(1 + V_{sc})$ $V_{\rm SL}$) in their suggested two-phase heat transfer correlations. These are the correlations of Elamvaluthi and Srinivas (1984), Groothuis and Hendal (1959), Knott et al. (1959), Martin and Sims (1971), and Shah (1981).

4. Lockhart-Martinelli [1949] Type Two-Phase Heat Transfer Correlations

In this approach, the two-phase heat transfer data were correlated using the relationship between the two-phase and single-phase pressure drops suggested by Lockhart and Martinelli (1949). This approach characterizes the flow features by two parameters: two-phase to singlephase liquid pressure drop ratio, defined as $\phi = \Delta$ $P_{TP}/\Delta P_L$; and ratio of two-phase to singlephase heat transfer coefficients, $\Psi = h_{TP}/h_L$. The researchers tried to predict Ψ using the Lackhart-Martinelli multiplier, ϕ^2 , with a leading coefficient and different exponent numbers. This approach appears in the correlations of Fried (1954), Serizawa et al. (1975), and Vijay et al. (1982).

Table 3 shows the recommended two-phase heat transfer correlations based on the results of the general validity test performed by Kim et al. (1999). These correlations have some of the following important parameters in common: Re_{SL} , $P\gamma_L$, μ_B/μ_W and either void fraction (α) or superficial velocity ratio (V_{SG}/V_{SL} or $1 + V_{SG}/V_{SL}$). Since there is no single correlation capable of predicting heat transfer rate for all fluid combinations in vertical pipes, there appears to be at

		T				Vert	ical E	xperin	nenta	Pipe	<u> </u>				Hor	zontal
Source	Correlation	(Wate Vijay	a-Air , 1978	\$)		Glyce Vijay	rin-Ai , 1978	r 3)		Sil (Rezk	icone allah,	Air 1987)	W-A (Rezkallah, 1987; King, 1952)	
		В	S	F	A	в	S	F	A	В	S	C	A	F	A	S S
Aggour (1978)	$ \begin{split} h_{TP} / h_{L} &= (1 - \alpha)^{-1/3} & Laminar (L) \\ Nu_{L} &= 1.615 (Re_{SL} Pr_{L} D / L)^{1/3} (\mu_{B} / \mu_{W})^{0.14} & (L) \\ h_{TP} / h_{L} &= (1 - \alpha)^{-0.83} & Turbulent (T) \\ Nu_{L} &= 0.0155 Re_{SL}^{-0.33} Pr_{L}^{-0.5} (\mu_{B} / \mu_{W})^{0.33} & (T) \end{split} $	1	V			1	V	V	1							
Chu & Jones(1980)	$Nu_{TP} = 0.43 (Re_{TP})^{0.55} (Pr_L)^{1/3} \left(\frac{\mu_B}{\mu_W}\right)^{0.14} \left(\frac{Pa}{P}\right)^{0.17}$				1											1
King(1952	$\frac{h_{TP}}{h_L} = \frac{R_L^{-0.52}}{1 + 0.025 Re_{SG}^{0.5}} \left[\left(\frac{\Delta P}{\Delta L} \right)_{TP} / \left(\frac{\Delta P}{\Delta L} \right)_L \right]^{0.32}$ $Nu_L = 0.023 Re_{SL}^{0.8} Pr_L^{0.4}$	insu expe infor	ficient riment mation	t tal n prov	ided	insu expe info	fficient riment matio	t al a prov	ided	insufficient experimental information provided					1	
Knott et al. (1959)	$\frac{h_{TP}}{h_L} = \left(1 + \frac{V_{SG}}{V_{SL}}\right)^{1/3} \text{ where } h_L \text{ is from Sider & Tate (1936)}$	1		7										1		
Kudirka et al. (1965)	$Nu_{TP} = 125 \left(\frac{V_{SG}}{V_{SL}}\right)^{1/8} \left(\frac{\mu_G}{\mu_L}\right)^{0.6} (Re_{SL})^{1/4} (P_{T_L})^{1/3} \left(\frac{\mu_B}{\mu_W}\right)^{0.14}$															1
Martin & Sims (1971)	$\frac{h_{TP}}{h_L} = 1 + 0.64 \sqrt{\frac{V_{SG}}{V_{SL}}} \text{ where } h_L \text{ is from Sider \&}$ Tate(1936)	1														V
Ravipudi & Godbold (1978)	$Nu_{TP} = 0.56 \left(\frac{V_{SG}}{V_{SL}}\right)^{0.3} \left(\frac{\mu_G}{\mu_L}\right)^{0.2} (Re_{SL})^{0.6} (Pr_L)^{1/3} \left(\frac{\mu_B}{\mu_W}\right)^{0.14}$				4							4	V			V
Rezkallah & Sims (1987)	$h_{TP} / h_L = (1 - \alpha)^{-0.9}$ where h_L is from Sider & Tate (1936)	1								4	4	V				
Shah (1981)	$\frac{h_{TP}}{h_L} = \left(1 + \frac{V_{SG}}{V_{SL}}\right)^{1/4}$ $Nu_L = 1.86 \left(Re_{SL} Pr_L D / L\right)^{1/3} (\mu_B / \mu_W)^{0.14} (L)$ $Nu_L = 0.023 Re_{SL}^{0.3} Pr_L^{0.4} (\mu_B / \mu_W)^{0.14} (T)$	1		√.		4				V				V	4	
V = Recomm	anded Completion based on the mediation of the			4.12	00/ 1		L	<u> </u>		L,		L		L.,		·

Table 3 Recommended correlations with regard to pipe orientation, fluids, and flow patterns from Kim et al. (1999) (See Nomenclature for Abbreviations)

least one parameter [ratio], which is related to able fro fluid combinations, that is missing from these were st

correlations. In addition, since, for the horizontal data available, the recommended correlations differ from those of vertical pipes, there must also be at least one additional parameter [ratio], related to pipe orientation, that is missing from the correlations. In order to improve the applicability of these correlations to different flow patterns, liquid combinations, and pipe orientation, six of the recommended correlations in Table 3 that showed the best overall performance were chosen for further study. The six selected correlations (Aggour, 1978; Knott et al., 1959; Kudirka et al., 1965; Ravipdi and Godbold, 1978; Rezkallah and Sims, 1987; Shah, 1981) represent the three groups of two-phase heat transfer correlations discussed above. The exponents of the key parameters that appear in these six two-phase heat transfer correlations were varied in order to get the best agreement between these correlations and an extensive set of experimental data available from the literature. The key parameters that were studied included $(1-\alpha)$, $(1 + V_{SG}/V_{SL})$, and (V_{SG}/V_{SL}) . Seven sets of experimental data (a total of 524 data points) from five available experimental studies (Aggour, 1978; King, 1952; Vijay, 1978; Rezkallah, 1987; Pletcher, 1966) were used in this study. The experimental data included five different liquid-gas combinations (water-air, glycerin-air, silicone-air, water-helium, water-freon 12), and covered a wide range of variables, including liquid and gas flow rates and properties, flow patterns, pipe sizes, and pipe orientation. The ranges of these seven sets of experimental data are provided in Table 4.

5. Results and Discussion

Table 5 gives a summary of the optimal values for the exponent (n) of the key parameter in each of the six selected two-phase heat transfer correlations. These values were obtained by varying the exponents of the key parameters in the

Water-Air	$16.71 \le \dot{m}_L (lbm/hr) \le 8996$	$0.06 \le V_{SL}(ft/sec) \le 34.80$	$231.83 \le \text{Re}_{\text{SL}} \le 126630$
Vertical	$0.058 \le \dot{m}_{G} (lbm/hr) \le 216.82$	$0.164 \le V_{SG}(ft/sec) \le 460.202$	$43.42 \le \text{Re}_{\text{SG}} \le 163020$
Data (139 Points)	$0.007 \le X_{TT} \le 433.04$	59.64 ≤ T _{MIX} (°F) ≤ 83.94	$14.62 \le P_{MIX} (psi) \le 74.44$
of Vijay (1978)	$0.061 \le \Delta P_{TP} (psi) \le 17.048$	$0.007 \le \Delta P_{\text{TPF}} (\text{psi}) \le 16.74$	$0.033 \le \alpha \le 0.997$
	$5.503 \le \Pr_L \le 6.982$	$0.708 \le \Pr_G \le 0.710$	$11.03 \le Nu_{TP} \le 776.12$
	$101.5 \le h_{TP} (Btu/hr-ft^2-{}^{\circ}F) \le 7042.3$	$0.813 \le \mu_W/\mu_B \le 0.933$	L/D = 52.1, D = 0.46 in.
Glycerin-Air	$100.5 \le \dot{m}_L (\text{lbm/hr}) \le 1242.5$	$0.31 \le V_{SL}(ft/sec) \le 3.80$	$1.77 \le \text{Re}_{\text{SL}} \le 21.16$
Vertical	$0.085 \le \dot{m}_{G} (lbm/hr) \le 99.302$	$0.217 \le V_{SG}(ft/sec) \le 117.303$	$63.22 \le \text{Re}_{\text{SG}} \le 73698$
Data (57 Points)	$0.15 \le X_{TT} \le 407.905$	$80.40 \le T_{MIX}$ (°F) ≤ 82.59	$17.08 \le P_{MDX} (psi) \le 62.47$
of Vijay (1978)	$1.317 \le \Delta P_{TP} \text{ (psi)} \le 20.022$	$1.07 \le \Delta P_{\text{TPF}} \text{ (psi)} \le 19.771$	$0.0521 \le \alpha \le 0.9648$
	$6307.04 \le \Pr_L \le 6962.605$	$0.708 \le \Pr_G \le 0.709$	$12.78 \leq \mathrm{Nu_{TP}} \leq 37.26$
	$54.84 \le h_{TP} (Btu/hr-ft^2-{}^{\circ}F) \le 159.91$	$0.513 \le \mu_W/\mu_B \le 0.610$	L/D = 52.1, D = 0.46 in.
Silicone-Air	$17.3 \le \dot{m}_L \text{ (lbm/hr)} \le 196$	$0.072 \le V_{SL}(ft/sec) \le 30.20$	$47.0 \le \mathrm{Re}_{\mathrm{SL}} \le 20930$
Vertical	$0.07 \le \dot{m}_{\rm G} (\text{lbm/hr}) \le 157.26$	$0.17 \le V_{SG}(ft/sec) \le 363.63$	$52.1 \le \text{Re}_{SG} \le 118160$
Data (162 points)	$72.46 \le T_W(^{\circ}F) \le 113.90$	$66.09 \le T_B(^{\circ}F) \le 89.0$	$13.9 \le P_{MIX} (psi) \le 45.3$
of Rezkallah (1987)	$0.037 \le \Delta P_{TP} (psi) \le 9.767$	$0.094 \le \Delta P_{TPF} (psi) \le 9.074$	$0.011 \le \alpha \le 0.996$
	$61.0 \le \Pr_L \le 76.5$	$0.079 \le \Pr_G \le 0.710$	$17.3 \le \mathrm{Nu_{TP}} \le 386.8$
	$29.9 \le h_{TP} (Btu/hr-ft^{z}-{}^{\circ}F) \le 683.0$		L/D = 52.1, D = 0.46 in.
Water-Helium	267 ≤ ḿ _L (lbm/hr) ≤ 8996	$1.03 \le V_{SL}(ft/sec) \le 34.70$	$3841 \le \mathrm{Re}_{\mathrm{SL}} \le 125840$
Vertical	$0.020 \le \dot{m}_{\rm G} \ (\text{lbm/hr}) \le 33.7$	$0.423 \leq V_{SG}(ft/sec) \leq 483.6$	$14.0 \le \text{Re}_{\text{sG}} \le 23159$
Data (53 Points)	$0.16 \le X_{TT} \le 769.6$	$67.4 \le T_{MIX} (^{\circ}F) \le 82.0$	$15.5 \le P_{MDX} (psi) \le 53.3$
of Aggour (1978)	$0.3 \leq \Delta P_{TP}(psi) \leq 13.2$	$0.01 \le \Delta P_{\text{TPF}} \text{ (psi)} \le 12.5$	$0.038 \le \alpha \le 0.958$
	$5.78 \leq \Pr_L \leq 7.04$	$0.6908 \le \Pr_G \le 0.691$	$86.6 \le Nu_{TP} \le 668.2$
	$794 ≤ h_{TP}$ (Btu/hr-ft ² -°F) ≤ 6061	$83.9 \le T_W$ (°F) ≤ 95.7	L/D = 52.1, D = 0.46 in
Water-Freon 12	$267 \le \dot{m}_L (lbm/hr) \le 3598$	$1.03 \le V_{SL}(ft/sec) \le 13.89$	$4190 \le \mathrm{Re}_{\mathrm{SL}} \le 51556$
Vertical	0.84 ≤ m _G (lbm/hr) ≤ 206.59	$0.51 \le V_{SG}(ft/sec) \le 117.7$	$859.5 \le \text{Re}_{\text{SG}} \le 209430$
Data (44 Points)	$0.16 \le X_{TT} \le 226.5$	$75.26 \le T_{MIX}$ (°F) ≤ 83.89	$15.8 \le P_{MIX} (psi) \le 27.8$
of Aggour (1978)	$0.04 \le \Delta P_{TP} (psi) \le 4.92$	$0.02 \leq \Delta P_{\text{TPF}} \text{ (psi)} \leq 4.48$	$0.035 \le \alpha \le 0.934$
	$5.63 \le \Pr_L \le 6.29$	$0.769 \le \Pr_G \le 0.77$	$87.1 \le Nu_{TP} \le 472.4$
	800 ≤ h_{TP} (Btu/hr-ft ² -°F) ≤ 4344	90.36 ≤ T _w (°F) ≤ 94.89	L/D = 52.1, D = 0.46 in
Water-Air	$0.069 \le \dot{m}_{L} (lbm/sec) \le 0.3876$	$0.03 \le \dot{m}_{G} (lbm/sec) \le 0.2568$	$7.84 \le \Delta P/L \ (lbf/ft^3) \le 137.5$
Horizontal	$0.22 \le \Delta P_{M}/L (lbf/ft^{3}) \le 26.35$	$0.021 \le X_{TT} \le 0.490$	$1.45 \le \phi_{g} \le 3.54$
Data (48 points)	$7.23 \leq \phi_1 \leq 68.0$	$73.6 \le T_W$ (°F) ≤ 107.1	$64.9 \le T_{MIX}$ (°F) ≤ 99.4
of Pletcher (1966)	$7372 \le q'' (Btu/hr-ft^2) \le 11077$	$433 \le h_{TP} (Btu/hr-ft^2-{}^{\circ}F) \le 1043.8$	L/D = 60.0, D = 1.0 in.
Water-Air	$1375 \le \dot{m}_L (lbm/hr) \le 6410$	$0.82 \le \dot{m}_{G} (SCFM) \le 43.7$	$22500 \le \text{Re}_{\text{SL}} \le 119000$
Horizontal	$1570 \le \text{Re}_{sG} \le 84200$	$0.41 \le X_{TT} \le 29.10$	$0.117 \le R_L \le 0.746$
Data (21 points)	$136.8 \le T_{MIX}(^{\circ}F) \le 144.85$	$184.3 \le T_W (^{\circ}F) \le 211.3$	$15.8 \le P_{MIX} (psi) \le 55.0$
of King (1952)	$1.027 \le \Delta P_{TP} \text{ (psi)} \le 22.403$	$1462 \le h_{TP} (Btu/hr-ft^2-{}^{\circ}F) \le 4415$	$0.33 \leq V_{SG}/V_{SL} \leq 7.65$
	$1.35 \le h_{TP} / h_L \le 3.34$	$1.35 \le \phi_1 \le 8.20$	L/D = 252, D = 0.737 in.

Table 4 Ranges of the experimental data used in this study

correlations in order to get the best agreement (based on mean and r. m. s. deviations) between the correlations and the experimental data. The two-phase heat transfer experimental data used for this purpose were the 139 water-air experimental data points of Vijay (1978), 57 glycerinair experimental data points of Vijay (1978), 162 silicone-air experimental data points of Rezkallah (1987), 53 water-helium experimental data points of Aggour (1978), and the 44 waterfreon 12 experimental data points of Aggour (1978) in vertical pipes, and the 48 water-air experimental data points of Pletcher (1966) and the 21 water-air experimental data points of King (1952) in horizontal pipes. Table 5, aside from the optimal n values for each flow pattern, gives the percent overall mean, r. m. s., and range of deviations of the predictions from the data for

Dongwoo Kim

Aggour (19	78) Correlation	on with the O	ptimal n Values for	or Each Flow I	Pattern, $h_{TP} = fc$	$tn(Re_{SL}, Pr_L,)$	$(1-\alpha)^n$
Flow Pattern	Vijay	Vijay	Rezkallah	Aggour	Aggour	Pletcher	King
	(1978)	(1978)	(1987)	(1978)	(1978)	(1966)	(1952)
	W-A	G-A	S-A	W-H	W-F12	W-A	W-A
Bubbly	0.595	-0.240	5.303	-0.174	-0.741		
Slug	-0.60	-0.111	-0.733	-0.603	-0.849		-0.442
Froth	-0.172	-0.242	-0.641	-0.339	-0.414		
Annular	-0.645	-0.351	-0.366	-0.608	-0.859	-0.851	
Churn			-0.673				
Bubbly-Slug		-0.095	0.077	-0.874	-1.144		
Bubbly-Froth	-0.090		1.872	0.70	0.70		
Slug-Annular	-0.683	-0.235		0.773	-0.787		
Slug-Churn			-0.551				
Froth-Annular	-0.542		0.211				
Annular-Mist	-0.530		-0.428	-0.413			
Churn-Annular			-0.663				
Mean Dev. (%)	1.50	-0.49	-5.57	-0.85	1.03	28.62	4.70
rms Dev. (%)	29.49	6.27	66.98	17.29	8.22	52.48	13.53
Dev. Range (%)	-126.0 &	-18.2 &	-226.8 &	-27.7 &	-15.7 &	-125.0 & 77.3	-36.1 &
	70.8	19.4	74.8	47.7	13.5	1	33.3
Aggour (1978) C	orrelation wi	th the Origina	al n Values for Al	I Flow Pattern	s, n = -1/3 (Lan	ninar) and -0.83	(Turbulent)
Mean Dev. (%)	-14.28	-13.82	-5.57	-45.20	-1.04	-233.85	-57.46
rms Dev. (%)	56.27	18.44	74.95	72.51	14.35	316.86	66.21
Dev. Range (%)	-380.5 &	-39.0 &	-226.8 &	-369.3 &	-28.6 &	-770.8 & 71.4	-138.2 &
	85.4	19.3	74.8	12.8	36.8		-14.6
D 1 11.1 0 C'	(1007) (1		4 0 1 1 17		71 . D. H 1	- f-+- (D D	·)(1 ···)]
Rezkallah & Sim	s (1987) Cor	relation with	the Optimal n Va	lues for Each I	Flow Pattern, h	$r_P = fctn(Re_{SL}, Pr$	$(1-\alpha)^{n}$
Rezkallah & Sim Flow Pattern	s (1987) Cor Vijay	Vijay	the Optimal n Va Rezkallah	Aggour	Flow Pattern, h	$P = fctn(Re_{SL}, Pr$ Pletcher	$\frac{1}{1}, \dots)(1-\alpha)^n$ King
Rezkallah & Sim Flow Pattern	s (1987) Cor Vijay (1978)	Vijay (1978)	the Optimal n Va Rezkallah (1987)	Aggour (1978)	Flow Pattern, h Aggour (1978)	$r_{P} = fctn(Re_{SL}, Pr)$ Pletcher (1966)	$\begin{array}{c} \underset{L}{\text{King}} \\ (1952) \\ \underset{M}{\text{W}} \end{array}$
Rezkallah & Sim Flow Pattern	s (1987) Cor Vijay (1978) W-A	Vijay (1978) G-A	the Optimal n Va Rezkallah (1987) S-A	lues for Each I Aggour (1978) W-H	Flow Pattern, h Aggour (1978) W-F12	$r_{p} = fctn(Re_{SL}, Pr)$ Pletcher (1966) W-A	L,)(1-α) ⁿ King (1952) W-A
Rezkallah & Sim Flow Pattern Bubbly	s (1987) Cor Vijay (1978) W-A -0.571	relation with Vijay (1978) G-A 0.467	the Optimal n Va Rezkallah (1987) S-A -1.282	ues for Each I Aggour (1978) W-H -0.953	Flow Pattern, h Aggour (1978) W-F12 -1.243	rp = fcm(Re _{SL} , Pr Pletcher (1966) W-A	$(1-\alpha)^n$ King (1952) W-A
Rezkallah & Sim Flow Pattern Bubbly Slug	s (1987) Cor Vijay (1978) W-A -0.571 -0.623	relation with Vijay (1978) G-A 0.467 0.059	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664	ues for Each l Aggour (1978) W-H -0.953 -0.653	Flow Pattern, h Aggour (1978) W-F12 -1.243 -0.90	rp = fctn(Re _{SL} , Pr Pletcher (1966) W-A	$(1-\alpha)^n$ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411	relation with Vijay (1978) G-A 0.467 0.059 -0.151	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374	ues for Each 1 Aggour (1978) W-H -0.953 -0.653 -0.502	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637	$P = fcm(Re_{SL}, Pr)$ $P = fcm(Re_{SL}, Pr)$ $P = fcm(Re_{SL}, Pr)$ $P = fcm(Re_{SL}, Pr)$ $W = A$	L,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480	ues for Each 1 Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880	rp = fctn(Re _{SL} , Pr Pletcher (1966) W-A -0.401	L,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Pubbly Sho	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 0.808	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880	rp = fctm(Re _{SL} , Pr Pletcher (1966) W-A -0.401	t,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly Froth	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.50	rp = fcm(Re _{SL} , Pr Pletcher (1966) W-A -0.401	t,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug Annular	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.463 -0.463	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.650	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.50 -0.825	rp = fcm(Re _{SL} , Pr Pletcher (1966) W-A -0.401	t,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.463 -0.661	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.628 -0.898 -0.556	ues for Each 1 Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.50 -0.825	-0.401	t,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.463 -0.661	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.628 -0.898 -0.556 -0.548 -0.318	ues for Each 1 Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.50 -0.825	-0.401	t,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.463 -0.661 -0.664 -0.664 -0.664	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.628 -0.898 -0.556 -0.556 -0.548 -0.318 -0.393	ues for Each 1 Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.50 -0.825	-0.401	t,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.463 -0.661 -0.664 -0.519	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556 -0.548 -0.318 -0.318 -0.393 -0.662	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.50 -0.825	-0.401	L,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.661 -0.661 -0.664 -0.519	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556 -0.548 -0.318 -0.318 -0.393 -0.662 6 73	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.50 -0.825	P = fctn(Re _{SL} , Pr Pletcher (1966) W-A -0.401	L,)(1-α) ⁿ King (1952) W-A -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.463 -0.661 -0.664 -0.519 1.36 33.69	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161 -0.161	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556 -0.548 -0.318 -0.318 -0.393 -0.662 6.73 37.68	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.34 11 72	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.50 -0.825 - 1.74 1.74 7.55	P = fctn(Re _{SL} , Pr Pletcher (1966) W-A -0.401 -0.401 -0.401	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.473 -0.473 -0.473 -0.473 -0.473
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.463 -0.661 -0.664 -0.519 1.36 33.69 -1454 &	relation with Vijay (1978) G-A 0.059 -0.151 -0.30 0.133 -0.161 -1.15 10.51 -24 9 &	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556 -0.548 -0.318 -0.318 -0.393 -0.662 6.73 37.68 -147 5 &	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.431 -0.34 11.72 -27 1 &	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.50 -0.825 - 1.74 7.55 -20.6 &	P = fctn(Re _{SL} , Pr Pletcher (1966) W-A -0.401 -0.401 -0.401 -0.401 -0.401 -0.56 5 &	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.475 -
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.664 -0.661 -0.664 -0.519 1.36 33.69 -145.4 & 67.6	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161 -1.15 10.51 -24.9 & 19.0	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556 -0.548 -0.548 -0.318 -0.318 -0.393 -0.662 6.73 37.68 -147.5 & 59.6	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.431 -0.34 11.72 -27.1 & 34.6	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.50 -0.825 -1.74 -1.74 7.55 -20.6 & 20.0	P = fcm(Re _{SL} , Pr Pletcher (1966) W-A -0.401 -0.401 -0.401 -0.401 -0.401 -0.56.5 & 57.4	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Tms Dev. (%) Dev. Range (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.664 -0.661 -0.664 -0.519 1.36 33.69 -145.4 & 67.6 allah & Sims	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161 -1.15 10.51 -24.9 & 19.0 (1987) Correct	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.898 -0.556 -0.548 -0.548 -0.318 -0.393 -0.662 6.73 37.68 -147.5 & 59.6 elation with the O	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.431 -0.34 11.72 -27.1 & 34.6 riginal n Valu	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.50 -0.825 -1.280 -1.50 -0.825 -20.6 & 20.0 e for All Flow I	P = fcm(Re _{St} , Pr Pletcher (1966) W-A -0.401 -0.401 9.14 30.99 -56.5 & 57.4 Patterns, n = -0.9	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.475 -
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%) Rezk Mean Dev. (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.664 -0.661 -0.664 -0.519 1.36 33.69 -145.4 & 67.6 allah & Sims	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 0.133 -0.161 -1.15 10.51 -24.9 & 19.0 s (1987) Correct	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.398 -0.556 -0.548 -0.318 -0.393 -0.662 6.73 37.68 -147.5 & 59.6 elation with the O	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.431 -0.34 11.72 -27.1 & 34.6 riginal n Valu	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.50 -0.825 -0.825 -1.74 -1.74 -0.825 -20.6 & 20.0 e for All Flow J	P = fcm(Re _{St} , Pr Pletcher (1966) W-A -0.401 -0.401 9.14 30.99 -56.5 & 57.4 Patterns, n = -0.9 -333 49	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%) Rezk Mean Dev. (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.664 -0.661 -0.664 -0.519 1.36 33.69 -145.4 & 67.6 allah & Sims -35.36 80.03	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161 -1.15 10.51 -24.9 & 19.0 (1987) Corrol -51.49 54.86	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.398 -0.556 -0.548 -0.318 -0.393 -0.662 6.73 37.68 -147.5 & 59.6 elation with the O -20.02 52 55	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.431 -0.34 11.72 -27.1 & 34.6 riginal n Valu -47.53 87 39	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.280 -1.50 -0.825 -0.825 -1.75 -20.6 & 20.0 e for All Flow J -0.12 -0.12 -0.12	P = fcm(Re _{St} , Pr Pletcher (1966) W-A -0.401 -0.401 9.14 30.99 -56.5 & 57.4 Patterns, n = -0.9 -333.49 405.60	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%) Rezk Mean Dev. (%) Dev. Range (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.664 -0.661 -0.664 -0.519 1.36 33.69 -145.4 & 67.6 allah & Sims -35.36 80.03 -473.0 &	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 0.133 -0.161 -1.15 10.51 -24.9 & 19.0 3 (1987) Corrol -51.49 54.86 -82.9 &	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.398 -0.556 -0.548 -0.318 -0.393 -0.662 6.73 37.68 -147.5 & 59.6 elation with the O -20.02 52.55 -204.1 &	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.431 -0.34 11.72 -27.1 & 34.6 riginal n Valu -47.53 87.39 -457.6 &	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.280 -1.280 -1.50 -0.825 -0.825 -20.6 & 20.0 e for All Flow I -0.12 11.90 -27.3 &	P = fcm(Re _{St} , Pr Pletcher (1966) W-A -0.401 -0.401 9.14 30.99 -56.5 & 57.4 Patterns, n = -0.9 -333.49 405.60 -996.1 &	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0
Rezkallah & Sim Flow Pattern Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Tms Dev. (%) Dev. Range (%) Dev. Range (%)	s (1987) Cor Vijay (1978) W-A -0.571 -0.623 -0.411 -0.664 -0.664 -0.661 -0.664 -0.519 1.36 33.69 -145.4 & 67.6 allah & Sims -35.36 80.03 -473.0 & 37.5	relation with Vijay (1978) G-A 0.467 0.059 -0.151 -0.30 0.133 -0.161 -1.15 10.51 -24.9 & 19.0 (1987) Corro (1987) Corro 54.86 -82.9 & 2.46	the Optimal n Va Rezkallah (1987) S-A -1.282 -0.664 -0.374 -0.480 -0.628 -0.556 -0.548 -0.556 -0.548 -0.318 -0.393 -0.662 6.73 37.68 -147.5 & 59.6 elation with the O -20.02 52.55 -204.1 & 42.9	ues for Each I Aggour (1978) W-H -0.953 -0.653 -0.502 -0.637 -0.996 0.013 -0.660 -0.431 -0.431 -0.660 -0.431 -0.34 11.72 -27.1 & 34.6 riginal n Valu -47.53 87.39 -457.6 & 16.6	Flow Pattern, h ₁ Aggour (1978) W-F12 -1.243 -0.90 -0.637 -0.880 -1.280 -1.280 -1.280 -1.280 -1.280 -1.280 -1.280 -1.280 -1.280 -1.280 -1.280 -1.280 -0.637 -0.825 -20.6 & 20.0 e for All Flow J -0.12 11.90 -27.3 & 35.9	Pletcher (1966) W-A -0.401 -0.401 9.14 30.99 -56.5 & 57.4 Patterns, n = -0.9 -333.49 405.60 -996.1 & -43.5	L,)(1-α) ⁿ King (1952) W-A -0.473 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0.475 -0

Table 5 Different values for the exponent of the key parameters of six two-phase heat transfer correlations (See Nomenclature for Abbreviations)

 Table 5 (Cont'd.) Different values for the exponent of the key parameters of six two-phase heat transfer correlations (See Nomenclature for Abbreviations)

	Correlation	with the Opti	imal n Values for I	Each Flow Patte	$\operatorname{ern}, \operatorname{h_{TP}} = \operatorname{fctn}$	$(\text{Re}_{\text{SL}}, \text{Pr}_{\text{L}},)(1 -$	$+ V_{SG}/V_{SL})^n$
Flow Pattern	Vijay	Vijay	Rezkallah	Aggour	Aggour	Pletcher	King
	(1978)	(1978)	(1987)	(1978)	(1978)	(1966)	(1952)
	W-A	G-A	S-A	W-H	W-F12	W-A	W-A
Bubbly	0.529	-0.402	1.273	0.829	1.082		· .
Slug	0.334	-0.034	0.368	0.381	0.560		0.521
Froth	0.288	0.088	0.325	0.323	0.486		
Annular	0.374	0.162	0.280	0.337	0.505	0.477	
Churn			0.336				
Bubbly-Slug		-0.092	0.815	0.727	0.993		
Bubbly-Froth	0.371		0.591	0.650	1.370		
Slug-Annular	0.358	0.088		0.364	0.50		
Slug-Churn			0.382				
Froth-Annular	0.435		0.237				
Annular-Mist	0.308		0.233	0.222			
Churn-Annular			0.367				
Mean Dev. (%)	2.21	-1.56	7.22	0.20	2.29	23.40	1.74
rms Dev. (%)	20.35	8.59	26.77	10.80	7.99	48.70	11.76
Dev. Range (%)	-161.4 &	-23.0 &	-130.6 &	-26.9 &	-20.9 &	-125.0 & 77.3	-38.3 &
	62.6	17.3	65.4	30.0	23.5		22.0
K	nott et al. (19	59) Correlat	tion with the Origi	nal n Value for	All Flow Patt	terns, $n = 1/3$	
Mean Dev. (%)	3.76	-85.93	-4.09	0.74	27.20	-80.79	21.44
rms Dev. (%)	33.95	96.64	57.41	27.07	30.85	101.76	26.03
Dev. Range (%)	-139.5 &	-163.9 &	-235.7 &	-150.1 &	6.4 &	-231.0 & 10.3	-15.8 &
2000 Tulige (70)	65.8	-5.7	67.0	33.2	55.9		40.8
Shah (1981) C	orrelation wit	th the Optim	al n Values for Ea	ch Flow Pattern	$h_{TP} = fctn(R)$	$e_{SL}, Pr_{L},)(1 + V)$	V _{SG} /V _{SL}) ⁿ
Flow Pattern	Vijay	Vijay	Rezkallah	Aggour	Aggour	Pletcher	King
							0
	(1978)	(1978)	(1987)	(1978) W-	(1978)	(1966)	(1952)
	(1978) W-A	(1978) G-A	(1987) S-A	(1978) W- H	(1978) W-F12	(1966) W-A	(1952) W-A
Bubbly	(1978) W-A	(1978) G-A -0.402	(1987) S-A 0.094	(1978) W- H 0.952	(1978) W-F12 1.216	(1966) W-A	(1952) W-A
Bubbly Slug	(1978) W-A 0.703 0.399	(1978) G-A -0.402 -0.034	(1987) S-A 0.094 0.365	(1978) W- H 0.952 0.395	(1978) W-F12 1.216 0.625	(1966) W-A	(1952) W-A 0.589
Bubbly Slug Froth	(1978) W-A 0.703 0.399 0.314	(1978) G-A -0.402 -0.034 0.088	(1987) S-A 0.094 0.365 0.968	(1978) W- H 0.952 0.395 0.346	(1978) W-F12 1.216 0.625 0.531	(1966) W-A	(1952) W-A 0.589
Bubbly Slug Froth Annular	(1978) W-A 0.703 0.399 0.314 0.398	(1978) G-A -0.402 -0.034 0.088 0.162	(1987) S-A 0.094 0.365 0.968 0.265	(1978) W- H 0.952 0.395 0.346 0.346	(1978) W-F12 1.216 0.625 0.531 0.515	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn	(1978) W-A 0.703 0.399 0.314 0.398	(1978) G-A -0.402 -0.034 0.088 0.162	(1987) S-A 0.094 0.365 0.968 0.265 0.330	(1978) W- H 0.952 0.395 0.346 0.346	(1978) W-F12 1.216 0.625 0.531 0.515	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug	(1978) W-A 0.703 0.399 0.314 0.398	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517	(1978) W- H 0.952 0.395 0.346 0.346 0.346	(1978) W-F12 1.216 0.625 0.531 0.515 1.041	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth	(1978) W-A 0.703 0.399 0.314 0.398 0.422	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular	(1978) W-A 0.703 0.399 0.314 0.398 0.314 0.398 0.422 0.402	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.088	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.088	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367	(1978) W- H 0.952 0.395 0.346 0.346 0.346 0.765 0.70 0.375	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular	(1978) W-A 0.703 0.399 0.314 0.398 0.398 0.422 0.402 0.454	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126	(1978) W- H 0.952 0.395 0.346 0.346 0.346 0.765 0.70 0.375	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178	(1978) W- H 0.952 0.395 0.346 0.346 0.346 0.765 0.70 0.375 0.227	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361	(1978) W- H 0.952 0.395 0.346 0.346 0.346 0.765 0.70 0.375 0.227	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517	(1966) W-A 0.218	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303 1.26	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 -0.088 	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 6.91	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375 0.227 0.227	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75	(1966) W-A 0.218 4.89	(1952) W-A 0.589
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303 1.26 28.91	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 -0.088 	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 6.91 39.10	(1978) W- H 0.952 0.395 0.346 0.346 0.346 0.765 0.70 0.375 0.227 0.227 0.67 10.85	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69	(1966) W-A 0.218 0.218 4.89 24.14	(1952) W-A 0.589 1.93 13.95
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) rms Dev. (%) Dev. Range (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303 1.26 28.91 -129.2 &	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 0.088 	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 6.91 39.10 -152.0 &	(1978) W- H 0.952 0.395 0.346 0.346 0.346 0.765 0.70 0.375 0.227 0.227 0.67 10.85 -27.3 &	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69 -22.5 &	(1966) W-A 0.218 0.218 4.89 24.14 -47.2 &	(1952) W-A 0.589 1.93 13.95 -35.7 &
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) ms Dev. (%) Dev. Range (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303 1.26 28.91 -129.2 & 46.0	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 0.088 -0.088 -0.092 -1.56 10.38 -23.0 & 17.3	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 6.91 39.10 -152.0 & 76.2	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375 0.227 0.67 10.85 -27.3 & 29.7	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69 -22.5 & 24.3	(1966) W-A 0.218 0.218 4.89 24.14 -47.2 & 44.2	(1952) W-A 0.589 1.93 13.95 -35.7 & 22.0
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) ms Dev. (%) Dev. Range (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303 1.26 28.91 -129.2 & 46.0 Shah (1981	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 0.088 -0.088 -0.092 -1.56 10.38 -23.0 & 17.3) Correlation	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 6.91 39.10 -152.0 & 76.2 n with the Original	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375 0.227 0.227 0.67 10.85 -27.3 & 29.7 In Value for A	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69 -22.5 & 24.3 Il Flow Pattern	(1966) W-A 0.218 0.218 4.89 24.14 -47.2 & 44.2 ms, n = 1/3	(1952) W-A 0.589 1.93 13.95 -35.7 & 22.0
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303 1.26 28.91 -129.2 & 46.0 Shah (1981 24.86	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 0.088 -0.092 -1.56 10.38 -23.0 & 17.3) Correlation -50.12	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 0.361 6.91 39.10 -152.0 & 76.2 m with the Original 9.28	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375 0.227 0.227 0.67 10.85 -27.3 & 29.7 In Value for A 20.88	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69 -22.5 & 24.3 11 Flow Pattern 37.89	(1966) W-A 0.218 0.218 4.89 24.14 -47.2 & 44.2 ms, n = 1/3 -13.92	(1952) W-A 0.589 1.93 13.95 -35.7 & 22.0 37.42
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%) Mean Dev. (%) rms Dev. (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.454 0.303 1.26 28.91 -129.2 & 46.0 Shah (1981 24.86 31.51	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 0.088 -0.092 -1.56 10.38 -23.0 & 17.3) Correlation -50.12 54.0	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 6.91 39.10 -152.0 & 76.2 n with the Original 9.28 42.96	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375 0.227 0.227 0.67 10.85 -27.3 & 29.7 In Value for A 20.88 26.70	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69 -22.5 & 24.3 Il Flow Pattern 37.89 41.65	(1966) W-A 0.218 0.218 4.89 24.14 -47.2 & 44.2 ns, n = 1/3 -13.92 31.98	(1952) W-A 0.589 1.93 13.95 -35.7 & 22.0 37.42 39.65
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) ms Dev. (%) Dev. Range (%) Dev. Range (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.402 0.454 0.303 1.26 28.91 -129.2 & 46.0 Shah (1981 24.86 31.51 -29.4 &	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 -0.092 0.088 -0.092 -1.56 10.38 -23.0 & 17.3) Correlation -50.12 54.0 -86.7 &	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.367 0.126 0.178 0.361 6.91 39.10 -152.0 & 76.2 n with the Origina 9.28 42.96 -235.9 &	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375 0.227 0.227 0.67 10.85 -27.3 & 29.7 In Value for A 20.88 26.70 -42.1 &	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69 -22.5 & 24.3 Il Flow Patter 37.89 41.65 14.1 &	(1966) W-A 0.218 0.218 4.89 24.14 -47.2 & 44.2 ns, n = 1/3 -13.92 31.98 -76.4 &	(1952) W-A 0.589 1.93 13.95 -35.7 & 22.0 37.42 39.65 6.2 &
Bubbly Slug Froth Annular Churn Bubbly-Slug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Mean Dev. (%) ms Dev. (%) Dev. Range (%) Mean Dev. (%) Dev. Range (%)	(1978) W-A 0.703 0.399 0.314 0.398 0.422 0.402 0.402 0.402 0.454 0.303 1.26 28.91 -129.2 & 46.0 Shah (1981 24.86 31.51 -29.4 & 72.8	(1978) G-A -0.402 -0.034 0.088 0.162 -0.092 0.088 -0.092 -0.092 -0.092 -1.56 10.38 -23.0 & 17.3) Correlation -50.12 54.0 -86.7 & -1.3	(1987) S-A 0.094 0.365 0.968 0.265 0.330 0.517 -0.116 0.126 0.126 0.178 0.361 6.91 39.10 -152.0 & 76.2 n with the Origina 9.28 42.96 -235.9 & 80.0	(1978) W- H 0.952 0.395 0.346 0.346 0.765 0.70 0.375 0.227 0.227 0.67 10.85 -27.3 & 29.7 In Value for A 20.88 26.70 -42.1 & 56.3	(1978) W-F12 1.216 0.625 0.531 0.515 1.041 1.60 0.517 2.75 8.69 -22.5 & 24.3 Il Flow Patter 37.89 41.65 14.1 & 70.6	(1966) W-A 0.218 0.218 4.89 24.14 -47.2 & 44.2 ns, n = 1/3 -13.92 31.98 -76.4 & 33.8	(1952) W-A 0.589 1.93 13.95 -35.7 & 22.0 37.42 39.65 6.2 & 54.6

Dongwoo Kim

Kudirka et al. ((1965) Correl	ation with the	e Optimal n Value	s for Each Flor	w Pattern, Nu-	$r_{P} = fctn(Re_{SL}, Pr_{L}, Pr_{L})$	$\dots)(V_{SG}/V_{SL})^n$
Flow Pattern	Vijay	Vijay	Rezkallah	Aggour	Aggour	Pletcher	King (1952)
	(1978)	(1978)	(1987)	(1978)	(1978)	(1966)	W-A
	W-A	G-A	S-A	W-H	W-F12	W-A	
Bubbly	-0.045	-0.399	-0.060	-0.015	-0.063		
Slug	-0.246	0.527	-0.198	-0.222	-0.380		0.083
Froth	-0.184	0.437	-0.305	-0.098	-0.208		
Annular	0.032	0.335	-0.017	0.053	0.218	-0.024	
Churn			-0.109				
Bubbly-Slug		1.131	0.021	-0.730	-0.018		1
Bubbly-Froth	-0.195		-0.160	-2.620	-0.174		
Slug-Annular	-0.144	0.343		-0.039	-0.016		
Slug-Churn			-0.162				
Froth-Annular	0.247		0.298				
Annular-Mist	-0.006		-0.054	-0.037			
Churn-Annular			-0.041				
Mean Dev. (%)	-4.62	21.63	-5.30	2.70	3.82	-0.12	-2.56
rms Dev. (%)	52.27	37.12	39.68	30.72	24.37	18.50	26.63
Dev. Range (%)	-227.9 &	-51.4 &	-158.1 &	-130.2 &	-60.7 &	-48.9 &	-59.7 &
	53.4	87.0	60.7	46.9	49.9	48.4	28.6
	Kudirka et a	l. (1965) Cor	relation with the (Original n Valu	e for All Flow	v Patterns, $n = 1/8$	
Mean Dev. (%)	-71.82	61.62	-65.83	-39.18	10.76	-52.30	-4.30
rms Dev. (%)	240.25	61.86	130.59	80.45	40.39	59.92	27.61
Dev. Range (%)	-1330.6 &	45.1 &	-423.9 &	-236.8 &	-80.1 &	-157.6 &	-61.9 &
	55.3	72.2	64.5	48.9	51.5	8.5	27.5
Ravipudi &	Godbold (19	978) Correlat	ion with the Optin	nal n Values fo	or Each Flow	Pattern, Nu _{TP} = fctn	(Re _{sL} , Pr _L ,
)(\	/ _{SG} /V _{SL}) ⁿ			
Flow Pattern	Vijay	Vijay	Rezkallah	Aggour	Aggour	Pletcher	King (1952)
	(1978)	(1978)	(1987)	(1978)	(1978)	(1966)	W-A
	W-A	G-A	S-A	W-H	W-F12	W-A	
Bubbly	-0.032	-0.425	-0.024	-0.002	-0.045		A 144
Slug	0.070	0.897	0.344	0.164	0.309		0.463
Froth	-0.001	0.570	-0.135	0.061	-0.103		
Annular	0.268	0.515	0.994	0.001	0.205	0.102	
Churn			0.224	0.224	0.395	0.123	
BUDDIV-SUIG		1 100	0.282	0.224	0.395	0.123	
Dubbly Easth	0.072	-1.190	0.224 0.282 0.299 0.075	0.224	0.395 -0.149	0.123	
Bubbly-Froth	-0.072	-1.190	0.282 0.299 -0.075	0.224	0.395 -0.149 -0.088 0.312	0.123	
Bubbly-Froth Slug-Annular	-0.072 0.20	-1.190 0.599	0.282 0.299 -0.075	0.224 0.519 -2.751 0.205	0.395 -0.149 -0.088 0.312	0.123	
Bubbly-Froth Slug-Annular Slug-Churn	-0.072 0.20	-1.190 0.599	0.224 0.282 0.299 -0.075	0.224 0.519 -2.751 0.205	0.395 -0.149 -0.088 0.312	0.123	
Bubbly-Stug Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist	-0.072 0.20 0.393	-1.190 0.599	0.224 0.282 0.299 -0.075 0.312 0.236 0.099	0.224	0.395 -0.149 -0.088 0.312	0.123	
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular	-0.072 0.20 0.393 0.184	-1.190	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290	0.224 0.519 -2.751 0.205 0.119	0.395 -0.149 -0.088 0.312	0.123	
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular	-0.072 0.20 0.393 0.184	-1.190	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66	0.224 0.519 -2.751 0.205 0.119 5.85	0.395 -0.149 -0.088 0.312	0.123	316
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular Mean Dev. (%)	-0.072 0.20 0.393 0.184 4.04 29.77	-1.190 0.599 24.40	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29 50	0.224 0.519 -2.751 0.205 0.119 5.85 15.73	0.395 -0.149 -0.088 0.312 8.42 17.48	0.123 2.05	3.16
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular Mean Dev. (%) Tms Dev. (%) Dev. Range (%)	-0.072 0.20 0.393 0.184 4.04 29.77	-1.190 0.599 24.40 40.92 -48.9 &	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29.50	0.224 0.519 -2.751 0.205 0.119 5.85 15.73 -35.3 &	0.395 -0.149 -0.088 0.312 	0.123 2.05 19.23 -40.4 &	3.16 13.36 -22.8 &
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular Mean Dev. (%) rms Dev. (%) Dev. Range (%)	-0.072 0.20 0.393 0.184 4.04 29.77 -171.5 & 42.0	-1.190 0.599 24.40 40.92 -48.9 & 89.8	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29.50 -143.5 & 74.9	0.224 0.519 -2.751 0.205 0.119 5.85 15.73 -35.3 & 31.1	0.395 -0.149 -0.088 0.312 	0.123 2.05 19.23 -40.4 & 44.7	3.16 13.36 -22.8 & 24.3
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular Mean Dev. (%) ms Dev. (%) Dev. Range (%)	-0.072 0.20 0.393 0.184 4.04 29.77 -171.5 & 42.0 vipudi & Goo	-1.190 0.599 24.40 40.92 -48.9 & 89.8 Ibold (1978)	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29.50 -143.5 & 74.9 Correlation with	0.224 0.519 -2.751 0.205 0.119 5.85 15.73 -35.3 & 31.1 the Original n	0.395 -0.149 -0.088 0.312 8.42 17.48 -17.3 & 41.7 Value for All	0.123 2.05 19.23 -40.4 & 44.7 Flow Patterns, n = 0	3.16 13.36 -22.8 & 24.3 0.3
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular Mean Dev. (%) Dev. Range (%) Ra Mean Dev. (%)	-0.072 0.20 0.393 0.184 4.04 29.77 -171.5 & 42.0 vipudi & Goo -14.66	-1.190 0.599 24.40 40.92 -48.9 & 89.8 Ibold (1978) 66.18	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29.50 -143.5 & 74.9 Correlation with -12.06	0.224 0.519 -2.751 0.205 0.119 5.85 15.73 -35.3 & 31.1 the Original n -10.69	0.395 -0.149 -0.088 0.312 8.42 17.48 -17.3 & 41.7 Value for All 28.72	0.123 2.05 19.23 -40.4 & 44.7 Flow Patterns, n = 0 -193.51	3.16 13.36 -22.8 & 24.3 0.3 15.72
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular Mean Dev. (%) Dev. Range (%) Ra Mean Dev. (%) rms Dev. (%)	-0.072 0.20 0.393 0.184 4.04 29.77 -171.5 & 42.0 vipudi & Goo -14.66 86.60	-1.190 0.599 24.40 40.92 -48.9 & 89.8 Ibold (1978) 66.18 66.69	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29.50 -143.5 & 74.9 Correlation with -12.06 85.25	0.224 0.519 -2.751 0.205 0.119 5.85 15.73 -35.3 & 31.1 the Original n -10.69 58.86	0.395 -0.149 -0.088 0.312 -0.149 -0.088 0.312 -17.38 41.7 Value for All 28.72 	0.123 2.05 19.23 -40.4 & 44.7 Flow Patterns, n = 0 -193.51 212.15	3.16 13.36 -22.8 & 24.3 0.3 15.72 18.39
Bubbly-Froth Slug-Annular Slug-Chum Froth-Annular Annular-Mist Chum-Annular Mean Dev. (%) Dev. Range (%) Ra Mean Dev. (%) Tms Dev. (%) Dev. Range (%)	-0.072 0.20 0.393 0.184 4.04 29.77 -171.5 & 42.0 vipudi & Goo -14.66 86.60 -371.0 &	-1.190 0.599 24.40 40.92 -48.9 & 89.8 dbold (1978) 66.18 66.69 53.7 &	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29.50 -143.5 & 74.9 Correlation with -12.06 85.25 -501.8 &	0.224 0.519 -2.751 0.205 0.119 5.85 15.73 -35.3 & 31.1 the Original n -10.69 58.86 -275.0 &	0.395 -0.149 -0.088 0.312 8.42 17.48 -17.3 & 41.7 Value for All 28.72 33.61 -9.5 &	0.123 2.05 19.23 -40.4 & 44.7 Flow Patterns, n = 0 -193.51 212.15 -379.1 &	3.16 13.36 -22.8 & 24.3 0.3 15.72 18.39 -3.7 &
Bubbly-Froth Slug-Annular Slug-Churn Froth-Annular Annular-Mist Churn-Annular Mean Dev. (%) Dev. Range (%) Ra Mean Dev. (%) Dev. Range (%)	-0.072 0.20 0.393 0.184 4.04 29.77 -171.5 & 42.0 vipudi & Goo -14.66 86.60 -371.0 & 66.5	-1.190 0.599 24.40 40.92 -48.9 & 89.8 dbold (1978) 66.18 66.69 53.7 & 87.5	0.224 0.282 0.299 -0.075 0.312 0.236 0.099 0.290 3.66 29.50 -143.5 & 74.9 Correlation with -12.06 85.25 -501.8 & 79.2	0.224 0.519 -2.751 0.205 0.119 5.85 15.73 -35.3 & 31.1 the Original n -10.69 58.86 -275.0 & 61.8	0.395 -0.149 -0.088 0.312 8.42 17.48 -17.3 & 41.7 Value for All 28.72 33.61 -9.5 & 67.5	0.123 2.05 19.23 -40.4 & 44.7 Flow Patterns, n = (-193.51 212.15 -379.1 & -45.3	3.16 13.36 -22.8 & 24.3 0.3 15.72 18.39 -3.7 & 32.1

 Table 5 (Cont'd.) Different values for the exponent of the key parameters of six two-phase heat transfer correlations (See Nomenclature for Abbreviations)

each experimental data set based on the optimal and original n values. The flow pattern identification for the experimental data was based on the procedures suggested by Govier and Aziz (1973),

Griffith and Wallis (1961), Hewitt and Hall-Taylor (1970), Taitel et al. (1980), Taitel and Dukler (1976), and visual observation as appropriate. For the seven sets of different experimental fluid combinations and pipe orientation, this table also highlights the optimal n values of certain correlations that best predicted the experimental data. The results of predictions for the water-air experimental data of Vijay (1978) in a vertical pipe shown in Table 5 indicate that the correlations of Aggour (1978), Rezkallah and Sims (1987), and Shah (1981) did a good job with different exponent (n) values for each flow pattern. The mean and r. m. s. deviations of the predictions for the optimal n values for these correlations are much lower than those based on the original n value(s). Considering the performance of the correlations for all of the flow patterns and keeping in mind the values of the overall mean and r. m. s. deviations, the heat transfer correlation of Shah (1981), $h_{TP}/h_L = (1 + V_{SC}/$ V_{SL})^{1/4}, with the different exponent (n) values for the parameter $(1 + V_{SG}/V_{SL})$ is recommended for the water-air experimental data of Vijay (1978).

As shown in Table 5, for the glycerin-air experimental data of Vijay (1978) in a vertical pipe, the correlations of Aggour (1978), Rezkallah and Sims (1987), Knott et al. (1959), and Shah (1981) were capable of predicting the accuracy. experimental data with good Considering the overall performance of the correlations for all flow patterns, the correlation of Aggour (1978), $h_{TP}/h_L = (1-\alpha)^{-0.83}$, with different exponent (n) values for the parameter (1 $-\alpha$) is recommended for this set of experimental data with extremely high liquid Prandtl number $(6300 \sim 7000)$.

For the silicone-air experimental data of Rezkallah (1987) in a vertical pipe, the correlations of Ravipudi and Godbold (1978) and Knott et al. (1959) predicted the experimental data reasonably well with good r. m. s. deviation. The r. m. s. and max. deviations based on the different values of exponent n are much improved compared to those based on the original n value. Again, considering the overall performance of the correlations for all flow patterns, the correlation of Knott et al. (1959), $h_{TP}/h_L = (1 + V_{SG}/V_{SL})^{1/3}$, with the exponent (n) values for the parameter $(1 + V_{SG}/V_{SL})$ is recommended for this experimental data set with moderately high liquid Prandtl number (61 \sim 77).

The results of predictions for the water-helium experimental data of Aggour (1978) in a vertical pipe with the different exponent (n) values are also given in Table 5. The correlations of Rezkallah and Sims (1987), Knott et al. (1959), and Shah (1981) predicted the experimental data very accurately with good mean, r. m. s. and max. deviations. The magnitudes of the mean, r. m. s. and max. deviations for the optimal n values are much smaller than those calculated from the original n values. Among the three correlations, the correlation of Knott et al. (1959) with the different exponent (n) values for the parameter $(1 + V_{SG}/V_{SL})$ is recommended for the water-helium experimental data of Aggour (1978) in which the gas density change from air to helium. is approximately a factor of 10.

Most of the six two-phase heat transfer correlations shown in Table 5 predicted the waterfreon 12 experimental data of Aggour (1978) in a vertical pipe very accurately with good mean and r. m. s. deviations. The magnitudes of the r. m. s. deviations with the optimal n values were about two times better than those with the original n values. Among the six correlations, the correlation of Aggour (1978) with the different exponent (n) values for the parameter $(1-\alpha)$ is recommended for this experimental data set.

The water-air experimental data of Pletcher (1966) in a horizontal pipe with annular flow were accurately predicted by the correlations of Kudirka et al. (1965) and Ravipudi and Godbold (1978). Between these two correlations which belong to the same heat transfer correlation group and were developed based on the dimensional analysis concept, the correlation of Kudirka et al. (1965), $Nu_{TP} = 125 (V_{SG}/V_{SL})^{1/8} (\mu_G/\mu_L)^{0.6} (Re_{SL})^{1/4} (Pr_L)^{1/3} (\mu_B/\mu_W)^{0.14}$, with n=-0.024 for the exponent of (V_{SG}/V_{SL}) is recommended for this set of experimental data.

Table 5 also shows the results of the predictions

 Table 6
 Recommended modified two-phase heat transfer correlations for five fluid combinations and four major flow patterns in a vertical pipe (See Nomenclature for Abbreviations)

Recommended Exponent Values for Parameters [Shown in Table 5] of the Two-Phase Heat								
Transfer Corre	elations							
Correlation	Shah	Aggour	Knott et al.	Knott et al.	Aggour			
	(1981)	(1978)	(1959)	(1959)	(1978)			
Flow Pattern	Vijay	Vijay	Rezkallah	Aggour (1978)	Aggour			
	(1978)	(1978)	(1987)	W-H	(1978)			
	W-A	G-A	S-A		W-F12			
Bubbly	0.70	-0.24	1.27	0.83	-0.74			
Slug	0.40	-0.11	0.37	0.38	-0.85			
Froth	0.31	-0.24	0.33	0.32	-0.41			
Annular	0.40	-0.35	0.28	0.34	-0.86			
Mean Dev. (%)	1.66	-0.61	6.80	-0.03	0.65			
rms Dev. (%)	25.19	8.49	35.07	10.23	7.83			
Dev. Range (%)	-128.4 &	-18.4 &	-130.6 &	-17.7 &	-15.7 &			
	39.6	19.4	65.4	30.0	20.4			
C	Driginal n Value	e Results for Ea	ch Correlation Tak	en from Table 5				
Mean Dev. (%)	24.86	-13.82	-4.09	0.74	-1.04			
rms Dev. (%)	31.51	18.44	57.41	27.07	14.35			
Dev. Range (%)	-29.4 &	-39.0 &	-235.7 &	-150.1 &	-28.6 &			
	72.8	19.3	67.0	33.2	36.8			
C	Optimal n Value	e Results for Ea	ch Correlation Tak	en from Table 5				
Mean Dev. (%)	1.26	-0.49	7.22	0.20	1.03			
rms Dev. (%)	28.91	6.27	26.77	10.80	8.22			
Dev. Range (%)	-129.2 &	-18.2 &	-130.6 &	-26.9 &	-15.7 &			
	46.0	19.4	65.4	30.0	13.5			

 Table 7 Recommended simplified two-phase heat transfer correlations for five fluid combinations and four major flow patterns in a vertical pipe (See Nomenclature for Abbreviations)

Recommended Simplified Exponent Values for Parameters [Shown in Table 5] of the Two-Phase Heat Transfer Correlations									
Correlation	Shah (1981)	Aggour Knott et al. Knott (1978) (1959) (19		Aggour Knott et al. Knott et al. (1978) (1959) (1959)		Aggour Knott et al. Knott et al. (1978) (1959) (1959)		our Knott et al. Knott et al. 78) (1959) (1959)	
Flow Pattern	Vijay (1978) W-A	Vijay (1978) G-A	Rezkallah (1987) S-A	Aggour (1978) W-H	Aggour (1978) W-F12				
Bubbly Slug Froth Annular	0.39	-0.28	0.29	0.34	-0.82				
Mean Dev. (%)	2.56	-5.14	12.11	3.21	-1.69				
rms Dev. (%)	23.92	14.87	36.59	12.31	14.23				
Dev. Range (%)	-117.6 & 40.2	-27.8 & 31.7	-142.6 & 69.1	-20.2 & 32.1	-27.9 & 23.1				

 Table 8
 Simplified two-phase heat transfer correlations, with recommendations, predicting all five fluid combinations for each of the four major flow patterns in a vertical pipe (See Nomenclature for Abbreviations)

Agg	Aggour (1978) Correlation with Different n Values for Flow Patterns, $h_{TP} = fctn(Re_L, Pr_L,)(1-\alpha)^n$							
Flow Pattern	Vijay	Vijay	Rezkallah	Aggour	Aggour	Mean	rms	Dev.
(Data Pts.)	(1978)	(1978)	(1987)	(1978)	(1978)	Dev.	Dev.	Range
	W-A	G-A	S-A	W-H	W-F12	(%)	(%)	(%)
Bubbly (71)			0.47			-7.62	10.63	-59.7 & 76.9
Slug (74)			-0.60			-4.72	36.72	-90.2 & 67.0
Froth (82)			-0.21			-10.07	25.04	-60.5 & 20.5
Annular (81)			-0.63			-16.72	68.88	-278.0 & 50.8
Rezkallah & Sims (1987) Correlation with Different n Values for Flow Patterns, $h_{TP} = fctn(Re_L, Pr_L,)(1-\alpha)^n$								
Bubbly			-0.76			2.07	13.83	-43.3 & 42.5
Slug			-0.62			-12.15	24.08	-129.7 & 61.3
Froth		The second	-0.43	自治など語識		-10.42	26.46	-68.2 & 15.4
Annular			-0.65			-21.94	82.63	-357.4 & 49.8
Knott et al	. (1959) Coi	rrelation wit	h Different n Val	ues for Flow	Patterns, h _{TP} =	fctn(Re _L ,	Pr _L ,)(1	$+ V_{SC}/V_{SL})^n$
Bubbly			0.70			2.30	13.72	-44.1 & 43.9
Slug			0.35			-6.71	50.01	-161.0 & 66.2
Froth			0.27			-10.89	33.13	-79.6 & 18.5
Annular			-0.36			-20.02	79.52	-297.4 & 51.3
Shah (1	981) Correl	ation with D	oifferent n Values	for Flow Pat	terns, $h_{TP} = fc$	tn(Re _L , Pr _I	,)(1 + V	V _{SG} /V _{SL}) ⁿ
Bubbly			0.80			-4.48	12.99	-47.7 & 17.0
Slug			0.39			-8.52	50.09	-130.5 & 75.4
Froth			0.29			-14.71	37.0	-90.6 & 20.0
Annular			0.37			-24.58	85.63	-320.0 & 51.2
Kudirka et	al. (1965) (Correlation v	vith Different n V	alues for Flor	w Patterns, No	$u_{TP} = fctn(1)$	Re _L , Pr _L ,	.)(V _{SG} /V _{SL}) ⁿ
Bubbly			-0.04			-10.21	52.88	-156.6 & 65.0
Slug			-0.24			-1.14	55.52	-194.0 & 77.5
Froth			-0.15			38.77	46.69	-14.7 & 89.2
Annular			0.04			5.46	57.87	-190.3 & 83.6
Ravipudi & G	odbold (197	8) Correlati	on with Different	n Values for	Flow Patterns	$h, Nu_{TP} = fc$	ctn(Re _L , Pr	$(V_{SG}/V_{SL})^n$
Bubbly			-0.02			1.21	21.13	-45.4 & 78.8
Slug			0.15			25.69	49.22	-135.6 & 86.9
Froth			-0.01			33.06	41.91	-3.9 & 87.8
Annular			0.26			5.25	38.82	-113.7 & 77.1

for the water-air slug flow experimental data of King (1952) in a horizontal pipe. The correlations of Knott et al. (1959) and Shah (1981) accurately predicted the horizontal slug flow water-air experimental data. Between these two correlations which were based on the separated flow model concept, the correlation of Knott et al. (1959) with the exponent (n) value of 0.521 for the parameter $(1 + V_{SG}/V_{SL})$ is recommended for this set of experimental data.

Table 6 summarizes this study's recommended modified two-phase heat transfer correlations for five fluid combinations (W-A, G-A, S-A, W-H, W-F12) and four major flow patterns (bubbly, slug, froth, annular) in a vertical pipe. In this table, the optimal values of n listed in Table 5 for the four major flow patterns have been rounded off to two significant digits without significant loss of accuracy. For comparison purposes, the table also provides the original and the optimal n values for each correlation. Referring to Table 6, it is interesting to observe that generally for three of the four major flow patterns: slug, froth, and annular, the reported exponent n values for a given fluid combination show a weaker dependence on flow pattern than for fluid combination. It should also be mentioned that Table 6 does not provide information on horizontal pipe

Fig. 1 Comparison of Shah (1981) Original and Modified Correlations with Vijay (1978) Water-Air Experimental Data in a Vertical Pipe (See Tables 5 and 7)

flows and the transitional vertical pipe flows. For horizontal pipe flows, this study has information on only two flow patterns (slug and annular); and for transitional flows, there is an insufficient number of data points in each transitional flow pattern to plot and determine appropriate n values.

Table 7 shows the results of our attempt to unify the exponent n values provided in Table 6 for each fluid combination and different flow patterns. The mean and r. m. s. deviations report-

Fig. 2 Comparison of Aggour (1978) Original and Modified Correlations with Vijay (1978) Glycerin-Air Experimental Data in a Vertical Pipe (See Tables 5 and 7)

ed in Table 7 for the simplified exponent n values show only a slight increase over those given in Table 6 for the modified exponent n values. As can be seen from the results of Table 7, the flow pattern dependency of the two-phase heat transfer correlations for a vertical pipe can be overcome by using an appropriate key parameter in the heat transfer correlation with an optimal exponent n value. For prediction of water-air, silicone-air, and water-helium two-phase heat transfer, the

Fig. 3 Comparison of Knott et al. (1959) Original and Modified Correlations with Rezkallah (1987) Silicone-Air Experimental Data in a Vertical Pipe (See Tables 5 and 7)

parameter $(1 + V_{SG}/V_{SL})$ and an appropriate exponent n should be used in the heat transfer correlations. Similarly, for prediction of glycerinair and water-freon 12 two-phase heat transfer, the parameter $(1-\alpha)$ and an appropriate exponent n value should be used in the heat transfer correlations.

Figures 1 to 5 compare the performance of the identified two-phase heat transfer correlations for the vertical pipe flow experimental data for each

Fig. 4 Comparison of Knott et al. (1959) Original and Modified Correlations with Aggour (1978) Water-Helium Experimental Data in a Vertical Pipe (See Tables 5 and 7)

of the five fluid combinations. These figures show the results of predictions from the correlations with the original n values (see Table 5), optimal n values (see Table 5), and the simplified n values (see Table 7). The comparison results for the horizontal pipe flow experimental data of Pletcher (1966) and King (1952) with the twophase heat transfer correlations are given in Figs. 6 and 7. These figures show results for both the original and the optimal exponent n values.

Fig. 5 Comparison of Aggour (1978) Original and Modified Correlations with Aggour (1978) Water-Freon 12 Experimental Data in a Vertical Pipe (See Tables 5 and 7)

Table 8 shows the results of our attempts to overcome the fluid combination dependency of the two-phase heat transfer correlations for a vertical pipe. For this purpose, this study combined the experimental data for each of the four major flow patterns (bubbly, slug, froth, annular) and the five different fluid combinations (W-A, G-A, S-A, W-H, W-F12). With this combined data, this study obtained the optimal value of the exponent n for the key parameters in

Fig. 6 Comparison of Kudirka et al. (1965) Original and Modified Correlations with Pletcher (1966) Water-Air Experimental Data in a Horizontal Pipe (See Table 5)

Fig. 7 Comparison of Knott et al. (1959) Original and Modified Correlations with King (1952) Water-Air Experimental Data in a Horizontal Pipe (See Table 5)

the six recommended correlations by Kim et al. (1999). Comparing the overall performance (by mean and r. m. s. deviations) of the predictions for each flow pattern for all five fluid combinations, the correlation of Aggour (1978), h_{TP} / $h_L = (1-\alpha)^{-0.83}$, with an n=-0.6 for the parameter $(1-\alpha)$ is recommended for slug flow, the correlation of Rezkallah and Sims (1987), $h_{TP}/$ $h_L = (1-\alpha)^{-0.9}$, with n=-0.43 for the parameter (1 $-\alpha$) is recommended for froth flow, the correlation of Shah (1981), $h_{TP}/h_L = (1 + V_{SC}/$ V_{SL})^{1/4}, with n=0.8 for the parameter $(1 + V_{SG})$ V_{SL}) is recommended for bubbly flow, and the correlation of Ravipudi and Godbold (1978), $= 0.56 (V_{SG}/V_{SL})^{0.3} (\mu_G/\mu_L)^{0.2} (Re_{SL})^{0.6}$ Nur $(Pr_L)^{1/3}(\mu_B/\mu_W)^{0.14}$, with n =0.26 for the parameter (V_{SG}/V_{SL}) is recommended for

Fig. 8 Comparison of the Modified Shah (1981), Aggour (1978), Rezkallah & Sims (1987), and Ravipudi & Godbold (1978) Correlations with the Experimental Data of Four Major Flow Patterns in a Vertical Pipe

annular flow. Figure 8 shows how well these four recommended heat transfer correlations predict the vertical pipe two-phase heat transfer data for each flow pattern and all five fluid combinations. As can be seen from the figure, the correlations with the recommended n values do a very good job of predicting the majority of the heat transfer data with a $\pm 30\%$ deviation. The experimental data that completely fell outside of the $\pm 30\%$ band were the glycerin-air froth flow data of Vijay (1978) using Rezkallah and Sims' (1987) correlation, the water-air slug flow data of Vijay (1978) using Aggour's (1978) correlation, and the water-air annular flow data of Vijay (1978) Godbold's (1978)Ravipudi and using correlation. To further improve the predictive capabilities of the recommended correlations in predicting the two-phase heat transfer coefficient in each flow pattern regardless of the fluid combination, there appears to be at least one additional parameter [ratio], which is related to the effects of different fluid combinations on twophase heat transfer, that must be added to the recommended correlations.

6. Summary and Conclusions

This study has modified the ability of the six two-phase heat transfer correlations recommended by Kim et al. (1999) to predict seven sets of experimental data that are available in the open literature. Five of these experimental data sets are for various flow patterns of water-air (Vijay, 1978), glycerin-air (Vijay, 1978), siliconeair (Rezkallah, 1987), water-helium (Aggour, 1978), and water-freon 12 (Aggour, 1978) in vertical pipes. The other two data sets are from the flow of water-air for slug (King, 1952) and annular (Pletcher, 1966) flow patterns in horizontal pipes.

Based on the improvements of the predictability of the two-phase heat transfer correlations shown in Table 5, this study makes the following recommendations: for glycerin-air and water-freon 12 flows within vertical pipes, this study recommend use of the Aggour (1978) correlation along with the optimal n values listed in Table 5 for the different fluid combinations; use of the Knott et al. (1959) correlation with the optimal n values listed in Table 5 for silicone-air and water-helium flows within vertical pipes and water-air slug flow within horizontal pipes; use of the Shah (1981) correlation along with the optimal n values listed in Table 5 for water-air flow within vertical pipes; and use of the Kudirka et al. (1965) correlation with the optimal n values for water-air annular flow within horizontal pipes.

Simplifying the modified exponent n values listed in Table 6 which depend on the four major flow patterns (bubbly, slug, froth, annular) in vertical pipes was successfully completed without significant loss of accuracy (see Table 7). The simplified exponent n values are 0. 39 for the parameter $(1 + V_{SG}/V_{SL})$ in the Shah (1981) correlation for predicting the water-air flow; -0. 28 for the parameter $(1-\alpha)$ in the Aggour (1978) correlation for glycerin-air flow; 0.29 for the parameter $(1 + V_{SC}/V_{SL})$ in the Knott et al. (1959) correlation for silicone-air flow; 0.34 for the parameter $(1 + V_{SG}/V_{SL})$ in the Knott et al. (1978) correlation for water-helium flow; and -0. 82 for the parameter $(1-\alpha)$ in the Aggour (1978) correlation for water-freon 12 flow.

Attempts to simplify the exponent values in the six two-phase heat transfer correlations according to the major flow patterns regardless of the fluid combinations for predicting the five sets of twophase heat transfer experimental data in vertical pipes were also made (see Table 8). Recommended exponent n values are 0.8 for the parameter $(1 + V_{sc}/V_{sL})$ in the Shah (1981) correlation for bubbly flow; -0.6 for the parameter $(1-\alpha)$ in the Aggour (1978) correlation for slug flow; -0.43 for the parameter $(1-\alpha)$ in the Rezkallah and Sims (1987) correlation for froth flow; and 0.26 for the parameter (V_{SG}/V_{SL}) in the Ravipudi and Godbold (1978) correlation for annular flow. To further improve the predictive capabilities of the recommended correlations in predicting the twophase heat transfer coefficient in each flow pattern, there appears to be at least one additional parameter, related to the effects of different fluid combinations on two-phase heat transfer, that might be required.

In the future work, it is planned to continue this study by investigating the development of a correlation which is robust enough to span all or most of the fluid combinations, pipe orientations, and flow patterns. This may require experimental data parameters which are not in the currently available data sets. In order to aid in this twophase heat transfer correlation development, it is planned to obtain additional horizontal flow pattern data, and to obtain experimental data for other fluid combinations which are applicable to the oil/gas industry.

Acknowledgments

The author gratefully acknowledges the financial support provided by the Oklahoma State University (OSU) Foundation.

References

Aggour, M. A., 1978, "Hydrodynamics and Heat Transfer in Two-Phase Two-Component Flow," Ph. D. Thesis, University of Manitoba, Winnipeg, MB, Canada.

Chu, Y-C. and B. G. Jones, 1980, "Convective Heat Transfer Coefficient Studies in Upward and Downward, Vertical, Two-Phase, Non-Boiling Flows," *AIChE Symp. Series*, Vol. 76, pp. 79 ~90.

Davis, E. J. and M. M. David, 1964, "Two -Phase Gas-Liquid Convection Heat Transfer," *I&EC Fundamentals*, Vol. 3, No. 2, pp. 111 ~118.

Dorresteijn, W. R., 1970, "Experimental Study of Heat Transfer in Upward and Downward Two -Phase Flow of Air and Oil Through 70 mm Tubes," *Proc. 4th Int. Heat Transfer Conf.*, Vol. 5, B 5. 9, pp. 1~10.

Dusseau, W. T., 1968, "Overall Heat Transfer Coefficient for Air-Water Froth in a Vertical Pipe," M. S. Thesis, Chemical Engineering, Vanderbilt University.

Elamvaluthi, G. and N. S. Srinivas, 1984, "Two -Phase Heat Transfer in Two Component Vertical Flows," *Int. J. Multiphase Flow*, Vol. 10, No. 2, pp. 237~242.

Groothuis, H. and W. P. Hendal, 1959, "Heat Transfer in Two-Phase Flow," *Chemical Engineering Science*, Vol. 11, pp. 212~220.

Hughmark, G. A., 1965, "Holdup and Heat Transfer in Horizontal Slug Gas Liquid Flow," *Chem. Engng. Sci.*, Vol. 20, pp. 1007~1010.

Khoze, A. N., S. V. Dunayev and V. A. Sparin, 1976, "Heat and Mass Transfer in Rising Two -Phase Flows in Rectangular Channels," *Heat Transfer Soviet Research*, Vol. 8, No. 3, pp. 87 ~90.

King, C. D. G., 1952, "Heat Transfer and Pressure Drop for an Air-Water Mixture Flowing in a 0.737 Inch I. D. Horizontal Tube," M. S. Thesis, University of California, California.

Knott, R. F., R. N. Anderson, A. Acrivos and E. E. Petersen, 1959, "An Experimental Study of Heat Transfer to Nitrogen-Oil Mixtures," *Ind.* and Engineering Chemistry, Vol. 51, No. 11, pp. 1369~1372.

Kudirka, A. A., R. J. Grosh and P. W. McFadden, 1965, "Heat Transfer in Two-Phase Flow of Gas-Liquid Mixtures," *I & EC Fundamentals*, Vol. 4, No. 3, pp. 339~344.

Martin, B. W. and G. E. Sims, 1971, "Forced Convection Heat Transfer to Water With Air Injection in a Rectangular Duct," *Int. J. Heat Mass Transfer*, Vol. 14, pp. 1115~1134.

Oliver, D. R. and S. J. Wright, 1964, "Pressure Drop and Heat Transfer in Gas-Liquid Slug Flow in Horizontal Tubes," *British Chem. Engrg.*, Vol. 9, No. 9, pp. 590~596.

Ravipudi, S. R. and T. M. Godbold, 1978, "The Effect of Mass Transfer on Heat Transfer Rates for Two-Phase Flow in a Vertical Pipe," *Proc.* 6th Int. Heat Transfer Conf., Toronto, Vol. 1, pp. 505~510.

Rezkallah, K. S. and G. E. Sims, 1987, "An Examination of Correlations of Mean Heat Transfer Coefficients in Two-Phase and Two -Component Flow in Vertical Tubes," *AIChE Symp. Series*, Vol. 83, pp. 109~114.

Serizawa, A., I. Kataoka and I. Michiyoshi, 1975, "Turbulence Structure of Air-Water Bubbly Flow-III. Transport Properties," *Int. J. Multiphase Flow*, Vol. 2, pp. 247~259. Shah, M. M., 1981, "Generalized Prediction of Heat Transfer During Two Component Gas-Liquid Flow in Tubes and Other Channels," *AIChE Symp. Series*, Vol. 77, No. 208, pp. 140~151.

Ueda, T. and M. Hanaoka, 1967, "On Upward Flow of Gas-Liquid Mixtures in Vertical Tubes: 3rd. Report, Heat Transfer Results and Analysis," *Bull. JSME*, Vol. 10, pp. 1008~1015.

Vijay, M. M., M. A. Aggour and G. E. Sims, 1982, "A Correlation of Mean Heat Transfer Coefficients for Two-Phase Two-Component Flow in a Vertical Tube," *Proceedings of 7th Int. Heat Transfer Conference*, Vol. 5, pp. 367~372.

Sieder, E. N. and G. E. Tate, 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," *Ind. Eng. Chem.*, Vol. 28, No. 12, p. 1429.

Akimenko, A. D., G. A. Zemskov and A. A. Skvortsov, 1970, "Study of Heat Transfer to Water-Air Flow," *Heat Transfer-Soviet Research*, Vol. 2, No. 2, pp. 47~49.

Barnea, D. and N. Yacoub, 1983, "Heat Transfer in Vertical Upwards Gas-Liquid Slug Flow," Int. J. Heat Mass Transfer, Vol. 26, No. 9, pp. 1365~1376.

Davis, E. J., S. C. Hung and S. Arciero, 1975, "An Analogy for Heat Transfer with Wavy/ Stratified Gas-Liquid Flow," *AIChE Journal*, Vol. 21, No. 5, pp. 872~878.

Domanskii, I. V., V. B. Tishin and V. N. Sokolov, 1969, "Heat Transfer During Motion of Gas-Liquid Mixtures in Vertical Pipes," J. of Applied Chemistry of the USSR, Vol. 42, No. 4, pp. 809~813.

Fedotkin, I. M. and L. P. Zarudnev, 1970, "Correlation of Experimental Data on Local Heat Transfer in Heating of Air-Liquid Mixtures in Pipes," *Heat Transfer-Soviet Research*, Vol. 2, No. 1, pp. 175~181.

Fried, L., 1954, "Pressure Drop and Heat Transfer for Two-Phase, Two-Component Flow," *Chem. Eng. Prog. Symp. Series*, Vol. 50, No. 9, pp. 47~51.

Ivanov, M. Y. and E. S. Arustamyan, 1971, "Study of Heat Transfer in an Ascending Gas -Liquid Flow," *Heat Transfer Soviet Research*, Vol. 3, No. 2, pp. 149~153.

Johnson, H. A., 1955, "Heat Transfer and

Pressure Drop for Viscous-Turbulent Flow of Oil -Air Mixtures in a Horizontal Pipe," ASME Trans., Vol. 77, pp. 1257~1264.

Johnson, H. A. and A. H. Abou-Sabe, 1952, "Heat Transfer and Pressure Drop for Turbulent Flow of Air-Water Mixture in a Horizontal Pipe," *ASME Trans.*, Vol. 74, pp. 977~987.

Kapinos, V. M., A. F. Slitenko, N. B. Chirkin and L. V. Povolotskiy, 1975, "Heat Transfer in the Entrance Section of a Pipe with a Two-Phase Flow," *Heat Transfer-Soviet Research*, Vol. 7, No. 2, pp. $126 \sim 128$.

Lunde, K. E., 1961, "Heat Transfer and Pressure Drop in Two-Phase Flow," *Chemical Engineering Progress Symposium Series*, Vol. 57, No. 32, pp. 104~110.

Michiyoshi, I., 1978, "Heat Transfer in Air -Water Two-Phase Flow in a Concentric Annulus," *Proc. 6th Int. Heat Transfer Conf.*, *Toronto*, Vol. 6, pp. 499~504.

Novosad, Z., 1955, "Heat Transfer in Two -Phase Liquid - Gas Systems," Collection Czecholav. Chem. Commun., Vol. 20, pp. 477 ~499.

Oliver, D. R. and A. Young Hoon, 1968, "Two -Phase Non-Newtonian Flow. Part II: Heat Transfer," *Trans. INSTN Chem. Engrs.*, Vol. 46, pp. T116~T122.

Ovchinnikov, Y. V. and A. N. Khoze, 1970, "Heat and Mass Transfer in Two-Component, Two-Phase Flows Inside of Cylinders," *Heat Transfer Soviet Research*, Vol. 2, No. 6, pp. 130 ~135.

Ozbelge, T. A. and T. G. Somer, 1994, "A Heat Transfer Correlation for Liquid-Solid Flows in Horizontal Pipes," *Chemical Engineering Journal*, Vol. 55, pp. 39~44.

Shaharabanny, O., Y. Taitel and A. E. Dukler, 1978, "Heat Transfer During Intermittent/Slug Flow in Horizontal Tubes: Experiments," *Proceedings of the 2nd CSNI Specialists Meeting*, June 12-14, Paris, pp. 627~649.

Shoham, O., A. E. Dukler and Y. Taitel, 1982,

"Heat Transfer During Intermittent/Slug Flow in Horizontal Tubes," Ind. Eng. Chem. Fundam., Vol. 21, pp. 312~319.

Vijay, M. M., 1978, "A Study of Heat Transfer in Two-Phase Two-Component Flow in a Vertical Tube," Ph. D. Thesis, University of Manitoba, Winnipeg, MB, Canada.

Rezkallah, K. S., 1987, "Heat Transfer and Hydrodynamics in Two-Phase Two-Component Flow in a Vertical Tube," Ph. D. Thesis, University of Manitoba, Winnipeg, MB, Canada.

Pletcher, R. H., 1966, "An Experimental and Analytical Study of Heat Transfer and Pressure Drop in Horizontal Annular Two-Phase, Two -Component Flow," Ph. D. Thesis, Cornell -niversity, Ithaca, New York.

Lockhart, R. and R. C. Martinelli, 1949, "Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes," *Chem. Eng. Prog.*, Vol. 45, No. 1, pp. 39~48.

Govier, G. W. and K. Aziz, 1973, The Flow of Complex Mixtures in Pipes, Van Nostrand Reinhold Company, New York.

Griffith, P. and G. B. Wallis, 1961, "Two -Phase Slug Flow," *J. Heat Transfer*, Trans. ASME, Ser. C 83, pp. 307~320.

Hewitt, G. F. and N. S. Hall-Taylor, 1970, Annular Two-Phase Flow, Pergamon Press Ltd., Oxford.

Taitel, Y., D. Barnea and A. E. Dukler, 1980, "Modeling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes," *AIChE Journal*, Vol. 26, No. 3, pp. 345~354.

Taitel, Y. and A. E. Dukler, 1976, "A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow," *AIChE Journal*, Vol. 22, No. 1, pp. 47~54.

Kim, D., Ghajar, A. J., Dougherty, R. L., and Ryali, V. K., "Comparison of Twenty Two-Phase Heat Transfer Correlations with Seven Sets of Experimental Data, Including Flow Pattern and Tube Orientation Effects," *Heat Transfer Engineering*, Vol. 20, January 1999, pp. 15~40.